Пуэ-7 п.1.7.49-1.7.79 заземление и защитные меры электробезопасности общие требования

1.7.101

Сопротивление заземляющего устройства, к которому
присоединены нейтрали генератора или трансформатора или выводы источника
однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом
соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного
тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно
быть обеспечено с учетом использования естественных заземлителей, а также
заземлителей повторных заземлений PEN— или PE-проводника ВЛ напряжением до 1 кВ при
количестве отходящих линий не менее двух. Сопротивление заземлителя,
расположенного в непосредственной близости от нейтрали генератора или
трансформатора или вывода источника однофазного тока, должно быть не более 15,
30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника
трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли >100 Ом·м допускается
увеличивать указанные нормы в 0,01  раз, но не более десятикратного.

Терминология заземления

Под заземлением понимают как соединение с грунтом Земли, так и соединение с некоторым “общим проводом” электрической системы, относительно которого измеряют электрический потенциал. Например, в космическом корабле или самолёте “землёй” считают металлический корпус. В приёмнике с батарейным питанием за “землю” принимают систему внутренних проводников, которые являются общим проводом для всей электронной схемы. В дальнейшем мы будем использовать именно такое понятие “земли”, не заключая больше это слово в кавычки, поскольку оно давно стало физическим термином.

Сетевое (рабочее) и защитное заземление.

Потенциал земли в электрической системе не всегда равен нулю относительно грунта Земли. Например, в летящем самолёте за счёт генерации электростатического заряда потенциал земли (корпуса) самолёта может составлять сотни и тысячи вольт относительно поверхности Земли. Аналогом земли космического корабля является “плавающая” земля” — не соединённая с грунтом Земли система проводников, относительно которой отсчитывается потенциал в электрической подсистеме. Например, в модуле аналогового ввода с гальванической развязкой внутренняя аналоговая земля модуля может не соединяться с грунтом Земли или соединяться с ним через большое сопротивление, скажем, 20 МОм.

Под защитным заземлением понимают электрическое соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты персонала от поражения электрическим током. Заземляющим устройством называют совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников. Общим проводом (проводником) называют проводник в системе, относительно которого отсчитываются потенциалы. Обычно он является общим для источника питания и подключённых к нему электронных устройств.

Описание и принцип работы соленоидов.
Читать далее

Формула расчёта сопротивления конденсатора.
Читать далее

Что такое счетчик Гейгера и как сделать его своими руками.
Читать далее

Примером может быть провод, общий для всех 8 входов 8 канального модуля аналогового ввода с одиночными (недифференциальными) входами. Общий провод во многих случаях является синонимом земли, но он может быть вообще не соединён с грунтом Земли. Сигнальным заземлением называют соединение с землёй общего провода цепей передачи сигнала. Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.

Как работает заземление.

Силовой землёй будем называть общий провод в системе, соединённый с защитной землей, по которому протекает большой ток (большой по сравнению с током для передачи сигнала). В основе такого деления земель лежит различный уровень чувствительности к помехам аналоговых и цифровых цепей, а также сигнальных и мощных (силовых) цепей и, как правило, гальваническая развязка между указанными землями в системах промышленной автоматизации. Глухозаземлённой нейтралью называется нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление (например, через трансформатор тока).

Виды электропроводок.

Нулевым проводом называется провод сети, соединённый с глухозаземлённой нейтралью.

Зачем нужно заземление?

Заземление – устройство, предохраняющее человека от поражения электрическим током. Благодаря использованию различных заземляющих приспособлений удается избежать жертв на производстве и в быту. Собственно в этом его основное предназначение. Но чтобы правильно воспользоваться заземлением необходимо для начала понять, что это такое и как оно работает. 

Что такое заземление?

Итак, что из себя представляет заземление? Конструктивно это чаще всего обычный кусок провода, который одним концом соединён с корпусом электрического аппарата, а другим концом с землей, откуда собственно и название. Заземление также может присутствовать в вилке современного электроинструмента,  там его роль такая же – при повреждении инструмента заземление предохраняет человека от удара электрическим током.

Существует множество различных систем заземления таких как TN-C, TN-S, TN-C-S и другие, собственно, обычному человеку, не имеющего электротехнического образования вовсе не обязательно вникать в данные вещи настолько глубоко, поэтому мы движемся дальше.

Как работает заземление

Суть заземления проста – служить проводником. Допустим, случилась аварийная ситуация – сломалась стиральная машина. При этом замкнуло обмотку электродвигателя (или что-нибудь еще) и корпус машинки оказался под напряжением. Человек ничего не подозревая может коснуться корпуса, после чего его ударит током. Для того чтобы этого не произошло, стиральную машину заземляют.

Тогда если человек коснётся корпуса, то ток пройдет не через него, а через заземление. А произойдёт так потому, что кожа человека имеет сопротивление порядка нескольких кило Ом, а сопротивление заземляющего проводника не более 5-10 Ом, что в тысячу раз меньше чем сопротивление кожи человека.

Выходит, что току в тысячу раз проще пройти по проводу и уйти землю, чем пройти через человека.  

В чем разница между заземлением и занулением

Если говорить простым языком, то зануление это соединение корпуса приемника электроэнергии с нулем. Ноль – это провод, имеющий нулевой потенциал и идущий из трансформатора. Зануление работает так: если на корпус приемника попадает провод под напряжением, то он через корпус замыкается на ноль, что вызывает короткое замыкание. Защита автоматически срабатывает и отключает питание.

Зануление это прием который используется только на производстве и по своим защитным свойствам гораздо хуже заземления. К сожалению, во многих старых домах не существует возможности защитить проводку квартиры с помощью заземления и прибегают занулению, что крайне не безопасно.

Вот мы вкратце и ответили на вопрос “зачем нужно заземление?”. Надеемся материал оказался вам полезен! Удачи!  

1 1 1 1 1 1 1 1 1 1 4.79 (100 Голоса)

Вопросы, затрагиваемые в ПУЭ

Контур заземления в частном доме

Утвержденные Министерством энергетики Российской Федерации Правила устройства электроустановок регламентируют область применения защитного оборудования, правила заземления и порядок его обустройства.

Под этим термином подразумевается совокупность металлических деталей, которые в собранном состоянии обеспечивают электрический контакт между устройствами и грунтом. В документе описываются требования к заземлению оборудования, технические характеристики и нормы.

ПУЭ распространяются на такие объекты:

  1. Средства производства. К ним относятся станки, подъемники всех типов для людей и грузов, холодильные установки, генераторы, электродвигатели, обогреватели, транспортеры и прочие изделия, установленные в заводских цехах.
  2. Электрические приборы бытового и промышленного назначения. Регламентируется заземление нейтрали трансформатора по ПУЭ, стабилизаторов, КТП, выпрямительных и накопительных устройств.
  3. Жилые и частные дома, дачи и коттеджи. В строениях старой постройки проводится только заземление шкафов по ПУЭ. Подключение квартир с выводом на розетки осуществляется индивидуально по инициативе жильцов.
  4. Трубопроводы, по которым транспортируются взрывоопасные и горючие материалы — нефть, газ, бензин, дизельное топливо, растворители.
  5. Опоры ЛЭП. Заземлять требуется сооружения из металла, который является отличным проводником тока. Также нужно оснащать защитными конструкциями бетонные столбы, высота которых не превышает 6 м.
  6. Металлические вышки для прожекторов, антенн и размещения наблюдателей. Кроме этого, строения оснащаются громоотводами.

Классификация заземляющих систем (естественные и искусственные конструкции)

В качестве заземляющих устройств с характеристиками, соответствующими требованиям ПУЭ, широко применяются как естественные, так и искусственные системы и приспособления. Естественными ЗУ называются уже заглубленные в землю металлические конструкции и трубопроводы или их части, находящиеся в непосредственном соприкосновении с грунтом.

Естественные заземлители зданий и сооружений

Поскольку на обустройство таких ЗУ специальных затрат совершенно не требуется – действующими нормативами они рекомендуются к применению в первую очередь. И только в случае, если естественные заземляющие конструкции отыскать не удается – приходится устраивать их искусственный аналог. Для выяснения того, что является определением понятия искусственного заземления, потребуется разобраться с ним более подробно.

Под такой системой понимается устройство, изготавливаемое специально в целях организации местного заземления на трансформаторной подстанции или на стороне потребителя. В качестве элементов конструкции традиционно применяются вбиваемые вертикальные или укладываемые горизонтальные стальные заготовки. В первом случае используются стальные прутки диаметром не менее 12 мм и длиной 3-5 метра, а во втором – уголки с типоразмером 50x50x6 мм. Для этой же цели могут выбираться металлические трубы диаметром не менее 6 мм.

Установка заземлителя в грунт

Вертикальные электроды (смотрите фото слева) забиваются в грунт на глубину 2,5 метра, для чего в нем предварительно подготавливается траншея глубиной около 0,5-0,6 метра. Оголовок вбитого электрода должен выступать над поверхностью земли выкопанной траншеи на высоту порядка 0,1-0,2 метра. Вертикальные элементы конструкции соединяются с горизонтальными перемычками на сварку.

Выбор параметров электродных прутьев и глубина их погружения зависят от характера грунта в данной местности и особенностей ее климатических условий.

Согласно ГОСТ и действующим положениям ПУЭ сопротивление Rз контура заземления на протяжении периода эксплуатации должно составлять:

  1. не более 8 Ом при питающем фазном напряжении подстанции 220/127 Вольт,
  2. порядка 4 Ома при линейном питающем напряжении 380 Вольт;
  3. не более 2-х Ом при электропитании 660/380 Вольт.

Эти параметры действительны для случая, когда ЗУ применяются в сетях напряжением до 1000 Вольт. Если они обустраивается для действующих электроустановок с рабочими напряжениями выше 1000 Вольт и с малыми токами замыкания на землю – сопротивление высчитывается по специальным формулам (смотрите ПУЭ).

1.7.70

Размещение вне зоны досягаемости для защиты от
прямого прикосновения к токоведущим частям в электроустановках напряжением до 1
кВ или приближения к ним на опасное расстояние в электроустановках напряжением
выше 1 кВ может быть применено при невозможности выполнения мер, указанных в
1.7.68-1.7.69, или их недостаточности. При этом расстояние между доступными
одновременному прикосновению проводящими частями в электроустановках
напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не
должно быть частей, имеющих разные потенциалы и доступных одновременному
прикосновению.

В вертикальном направлении зона досягаемости в
электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности,
на которой находятся люди (рис.1.7.6).

Рис.1.7.6. Зона досягаемости в электроустановках до 1 кВ:

S — поверхность, на которой может находиться человек;

 — основание поверхности S;

 —
граница зоны досягаемости токоведущих частей рукой человека,

находящегося на поверхности S;

0,75; 1,25; 2,50 м — расстояния от края поверхности S до границы зоны

досягаемости

Указанные размеры даны без учета применения вспомогательных
средств (например, инструмента, лестниц, длинных предметов).

Глухое погружение нейтрали

Системы заземления разделяют на две большие группы: с глухо заземленной нейтралью и с изолированной. В схеме первого типа нейтральный проводник (обозначается N) всегда заземлен и может быть независимым от защитного PE-проводника, а может соединяться с ним, образуя PEN-проводник.

Если нейтральный провод объединен с защитным проводником, он образует систему TN-C, если проводиться отдельно − систему TN-S, в случае, когда объединен на подстанции с защитным проводником, а при входе в здание разделяется на два проводника – защитный PE и функциональный N, образуется система TN-C-S. Еще одним видом является система, при которой нейтральный проводник заземляется на подстанции и к потребителю трехфазный ток поступает по четырем проводам, одним из которых является ноль N. Это − система TT.

Применение системы TN-C

Система TN-C широко использовалась ранее при так называемой двухпроводной сети. В этом случае в розетках отсутствовал заземленный контакт. В сетях, сконструированных по этой системе, заземлялся нулевой провод, но при обрыве его, все приборы оставались под напряжением. Это вынуждало заземлять корпуса каждого отдельного электроприбора. В современных строящихся зданиях эта система не проектируется. Используется только в старых зданиях.

Применение системы TN-S

Система TN-S более совершенна, обладает высокой степенью электробезопасности, так как имеет отдельный заземленный проводник, но стоимость ее неоправданно высока. При трехфазном питании приходится прокладывать от источника пять проводов – три фазы, нейтраль и защитный проводник PE.

Для устранения недостатка системы TN-S была создана TN-C-S. Она предусматривает один проводник PEN, который представляет собой общий провод, заземленный по всей длине от источника питания до ввода в здание, а перед вводом разделяется на нейтраль N и защитный проводник PE. Эта система тоже имеет весомый недостаток. При повреждении проводника PEN на протяжении участка от подстанции до здания, все подключенные внутри здания приборы остаются под опасным напряжением. Для этой системы ПУЭ (Правила устройства электроустановок) требуют проведения мероприятий по устройству дополнительной защиты проводника PEN от механических повреждений.

Тип заземления ТТ

Система ТТ используется для подачи электричества за городом и в сельской местности по линиям электропередач, устанавливаемым на опорах. Подключение электроустановок по этой системе разрешается лишь в том случае, если невозможно обеспечить все условия электробезопасности в системе TN и избежать при этом неоправданных материальных затрат. При контакте с электроприборами защита от тока должна осуществляться путем отключения питания в цепи. Для этого правилами предписываются специальные изделия – устройства защитного отключения – УЗО.

КАК РАБОТАЕТ ЗАЗЕМЛЕНИЕ

Существует несколько видов систем заземления, которые рассмотрены здесь. При применении любой из них возможны различные варианты развития событий.

1. Напряжение на заземленный участок цепи поступает через некоторое сопротивление, определяющее ток утечки на корпус.

При этом, если сопротивление достаточно велико, величина этого тока будет небольшой. В этом случае потенциал на корпусе прибора через заземляющий проводник просто сравняется с нулем. Но ток по проводу заземления будет протекать постоянно.

2. При «чистом» коротком замыкании (КЗ) возникают сверхтоки, величина которых ограничивается только сопротивлением заземления, а величина его мала.

Это значение определяется:

  • сопротивлением заземляющего устройства (ЗУ) – про это ниже;
  • сопротивлением проводов и контактов на участке от защищаемого оборудования до ЗУ.

Как правило, если все сделано правильно, вторым моментом можно пренебречь. Но если соединения выполнены некачественно или проводник имеет недостаточное сечение, то могут возникнуть серьезные проблемы.

Итак, что мы имеем при КЗ.

Ток утечки резко возрастает и происходит срабатывание автоматического выключателя. Если он есть, а он должен быть всегда.

В противном случае провода перегреются и:

  • или перегорят (это еще половина беды);
  • или возникнет пожар (про причины его возникновения за счет неисправностей электропроводки см. здесь).

В первом случае автомат может не сработать, через провод заземления будет постоянно протекать ток, что ни есть хорошо:

  • минимум – счетчик накрутит лишние киловатт часы;
  • максимум – проводка перегреется и произойдет то, что было описано несколько выше.

Выходом будет установка устройства защитного отключения (УЗО) или дифавтомата. По указанным ссылкам просто и доходчиво описано как все это подключается и работает.

1.7.94

Если заземляющее устройство электроустановки
напряжением выше 1 кВ сети с эффективно заземленной нейтралью соединено с
заземляющим устройством другой электроустановки при помощи кабеля с
металлической оболочкой или броней или других металлических связей, то для
выравнивания потенциалов вокруг указанной другой электроустановки или здания, в
котором она размещена, необходимо соблюдение одного из следующих условий:

1) прокладка в земле на глубине 1 м и на расстоянии 1 м от
фундамента здания или от периметра территории, занимаемой оборудованием,
заземлителя, соединенного с системой уравнивания потенциалов этого здания или
этой территории, а у входов и у въездов в здание — укладка проводников на
расстоянии 1 и 2 м от заземлителя на глубине 1 и 1,5 м соответственно и
соединение этих проводников с заземлителем;

2) использование железобетонных фундаментов в качестве заземлителей
в соответствии с 1.7.109, если при этом обеспечивается допустимый уровень
выравнивания потенциалов. Обеспечение условий выравнивания потенциалов
посредством железобетонных фундаментов, используемых в качестве заземлителей,
определяется в соответствии с ГОСТ
12.1.030 «Электробезопасность. Защитное заземление, зануление».

Не требуется выполнение условий, указанных в пп.1 и 2, если
вокруг зданий имеются асфальтовые отмостки, в том числе у входов и у въездов.
Если у какого-либо входа (въезда) отмостка отсутствует, у этого входа (въезда)
должно быть выполнено выравнивание потенциалов путем укладки двух проводников,
как указано в пп.1, или соблюдено условие по пп.2. При этом во всех случаях
должны выполняться требования 1.7.95.

Устройство контура заземления

В состав системы входят такие компоненты:

  1. Главная Pe-шина. Находится в распределительном щите внутри здания. К ней подключены кабели от розеток и электроприборов.
  2. Электрод-заземлитель. Так называется заглубленная в грунт конструкция.
  3. Проводник, связывающий оба вышеописанных компонента. В этом качестве используют стальную полосу толщиной до 5 мм или кабель.

В производственных зданиях в качестве общей шины часто используют контур, проложенный внутри помещений по периметру.

Заземляющий электрод

Самый простой электрод – вбитый в землю стальной прут, труба или уголок. Для снижения сопротивления растеканию заряда заземлитель формируют из нескольких таких элементов, соединяя их горизонтальными перемычками.

Описанный вариант недолговечен, т.к. металлопрокат корродирует, а ржавчина имеет высокую резистивность.

Более длительным ресурсом обладают электроды с защитным покрытием:

  • цинковым;
  • медным.

Второй вариант дороже, но эффективнее, т.к. обладает низким сопротивлением.

Работоспособность системы зависит не только от резистивности заземлителя, но и от проводимости грунта. На нее влияют такие факторы:

  • состав почвы;
  • влажность;
  • концентрация солей.

С увеличением глубины резистивность грунта резко снижается. Поэтому широкое распространение получили сборные (модульные) электроды, погружаемые на десятки метров. Изделие состоит из секций с резьбой или иным соединительным элементом.

Первую из них оснащают заостренным наконечником и вбивают в грунт, пока на поверхности не останется только хвостовик. Затем навинчивают или приваривают следующую секцию и продолжают заколачивание.

Защита заземления

Наружные элементы Pe-системы нуждаются в защите от коррозии, т.к. она приводит к негативным результатам:

  • увеличению сопротивления в зоне контакта с грунтом и в местах соединений отдельных компонентов;
  • уменьшению сечения проводников, вследствие чего те разрушаются при протекании больших токов.

Заглубляемую часть электродов защищают покрытием из цинка или меди либо помещают в бетон. Стыки перед обратной засыпкой грунта обматывают смоляной лентой.

Наземную часть обмазывают битумом. Его заливают и внутрь электрода, если в этом качестве используется труба.

Некоторые материалы несовместимы, т.к. дают в зоне контакта гальваническую коррозию. С учетом этого запрещено размещать медные заземлители рядом со стальными, в т.ч. арматурой фундаментов.

1.7.100

В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.

Искусственный заземлитель, предназначенный для заземления нейтрали, как правило, должен быть расположен вблизи генератора или трансформатора. Для внутрицеховых подстанций допускается располагать заземлитель около стены здания.

Если фундамент здания, в котором размещается подстанция, используется в качестве естественных заземлителей, нейтраль трансформатора следует заземлять путем присоединения не менее чем к двум металлическим колоннам или к закладным деталям, приваренным к арматуре не менее двух железобетонных фундаментов.

При расположении встроенных подстанций на разных этажах многоэтажного здания заземление нейтрали трансформаторов таких подстанций должно быть выполнено при помощи специально проложенного заземляющего проводника. В этом случае заземляющий проводник должен быть дополнительно присоединен к колонне здания, ближайшей к трансформатору, а его сопротивление учтено при определении сопротивления растеканию заземляющего устройства, к которому присоединена нейтраль трансформатора.

Во всех случаях должны быть приняты меры по обеспечении непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.

Если в PEN-проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN распределительного устройства напряжением до 1 кВ, установлен трансформатор тока, то заземляющий проводник должен быть присоединен не к нейтрали трансферматора или генератора непосредственно, а к PEN-проводнику, по возможности сразу за трансформатором тока. В таком случае разделение PEN-проводника на PE— и -проводники в системе  должно быть выполнено также за трансформатором тока. Трансформатор тока следует размещать как можно ближе к выводу нейтрали генератора или трансформатора.

Область применения. Определения

7.1.1. Настоящая глава Правил распространяется на электроустановки: жилых зданий, перечисленных в СНиП 2.08.01-89 «Жилые здания»; общественных зданий, перечисленных в СНиП 2.08.02-89 «Общественные здания и сооружения» (за исключением зданий и помещений, перечисленных в гл. 7.2): административных и бытовых зданий, перечисленных в СНиП 2.09.04-87 «Административные и бытовые здания»; к электроустановкам уникальных и других специальных зданий, не вошедших в вышеуказанный список, могут предъявляться дополнительные требования.

Далее по тексту, если нет уточнения, под словом «здания» понимаются все типы зданий, на которые распространяется данная глава.

Требования настоящей главы не распространяются на специальные электроустановки в лечебно-профилактических учреждениях, организациях и учреждениях науки и научного обслуживания, на системы диспетчеризации и связи, а также на электроустановки, которые по своему характеру должны быть отнесены к электроустановкам промышленных предприятии (мастерские, котельные, тепловые пункты, насосные, фабрики-прачечные, фабрики-химчистки и т.п.).

7.1.2. Электроустановки зданий, кроме требований настоящей главы, должны удовлетворять требованиям глав разд. 1-6 ПУЭ в той мере, в какой они не изменены настоящей главой.

7.1.3. Вводное устройство (ВУ) — совокупность конструкций, аппаратов и приборов, устанавливаемых на вводе питающей линии в здание или в его обособленную часть.

Вводное устройство, включающее в себя также аппараты и приборы отходящих линий, называется вводно-распределительным (ВРУ).

7.1.4. Главный распределительный щит (ГРЩ) — распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть. Роль ГРЩ может выполнять ВРУ или щит низкого напряжения подстанции.

7.1.5. Распределительный пункт (РП) — устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных электроприемников или их групп (электродвигателей, групповых щитков).

7.1.6. Групповой щиток — устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.

7.1.7. Квартирный щиток — групповой щиток, установленный в квартире и предназначенный для присоединения сети, питающей светильники, штепсельные розетки и стационарные электроприемники квартиры.

7.1.8. Этажный распределительный щиток — щиток, установленный на этажах жилых домов и предназначенный для питания квартир или квартирных щитков.

7.1.9. Электрощитовое помещение — помещение. доступное только для обслуживающего квалифицированного персонала, в котором устанавливаются ВУ, ВРУ, ГРЩ и другие распределительные устройства.

7.1.10. Питающая сеть — сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ.

7.1.11. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков.

7.1.12. Групповая сеть — сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников.

Установка и безопасность

Разнообразие электроустановок и условий по их эксплуатации создает большое количество вариаций, связанных с монтажом оборудования, ремонта и правил по работе с приборами и агрегатами.

Использование электроустановок в работе промышленных предприятий, организаций, электросистем зданий и объектов должно соответствовать стандартам и правилам и давать гарантию электробезопасности.

Заземление и применяемые защитные меры электробезопасности должны быть осуществлены в соответствии с требований нормативных актов, правил требований, стандартов.

Все существующие способы заземления электроустановок можно объединить выполнением условий по соединению частей и элементов электроустановок, которые могут проводить ток и быть под напряжением, с заземляющим проводником в виде шины и контуром заземления.

Заземление проводится для всех составных частей, которые могут при пробое изоляции оказаться под действием напряжения. Для различных зданий, предприятий может проводиться заземление одной установки, а в некоторых случаях объединение всех компонентов одного цеха для заземления.

Последний вариант используется, чтобы обезопасить от пробоя различные установки и станки, технологическое оборудование, которые могут соприкасаться и взаимодействовать.

Неправильное исполнение заземления приводит к появлению напряжения в тех частях устройств, на которых оно не предусмотрено по правилам эксплуатации. Такая небезопасная работа оборудования может привести к остановке, поломке, а также привести все устройство в непригодное состояние.

Ущерб может заключаться не только в поломке установок и выхода из строя, но и создания аварийных ситуаций, которые могут повлечь порчу имущества и иного оборудования. Самым опасным является воздействие напряжение на человека — от проблем со здоровьем до летального исхода.

ООО «ГОРИНКОМ» выполняет полный комплект услуг по заземлению электроустановок для зданий и предприятий. Опытные квалифицированные сотрудники обеспечат надежность работ по заземлению оборудования.

Заземление линий электропередач на столбах

Переносное заземление, предназначенное для ЛЭП, отличается от «наземных» вариантов наличием длинных изолированных штанг. Кроме того, на рабочих концах установлены не винтовые зажимы, а захватные крюки с фиксаторами.

Поскольку такие работы, проводятся как правило в поле, где нет штатного защитного заземления, применяются переносные заземлители. Они обычно входят в комплект.

Учитывая отсутствие винтовых зажимов, и, как следствие, менее надежный контакт с токонесущим проводом, устанавливаются дублирующие заземления: по 2–3 комплекта на один высоковольтный провод.

Монтаж производится с земли: то есть оператор стоит на грунте, а не устанавливает заземление со столба.

Штанговые переносные заземления для ЛЭП выполняются однофазными. Для соединения заземленных проводов между собой, линии соединяются на грунте, в точке соединения с переносным заземлителем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector