Можно ли сделать счетчик гейгера своими руками

КОД

Напишем код для определения количества радиации.

Arduino

#include <SPI.h>

#define LOG_PERIOD 15000 //Период регистрации в миллисекундах, рекомендуемое значение 15000-60000.
#define MAX_PERIOD 60000 //Максимальный период регистрации.

unsigned long counts; //
unsigned long cpm; //
unsigned int multiplier; //
unsigned long previousMillis; //
float uSv; // Переменная для перевода в микроЗиверты
float ratio = 151.0; // Коофициент для перевода импульсов в микроЗиверты
float uP = 0;
const byte interruptPin = D2; // Порт ESP к которому подключен счетчик

void tube_impulse(){ //Функция подсчета имульсов
counts++;
}

void setup(){ //
counts = 0;
cpm = 0;
multiplier = MAX_PERIOD / LOG_PERIOD;
Serial.begin(9600);
interrupts();
pinMode(interruptPin, INPUT);
attachInterrupt(digitalPinToInterrupt(interruptPin), tube_impulse, FALLING); //Определяем количество импульсов через внешнее прерывание на порту

}

void loop(){ //Основной цикл
unsigned long currentMillis = millis();
if(currentMillis — previousMillis > LOG_PERIOD){
previousMillis = currentMillis;
cpm = counts * multiplier;
Serial.println(cpm);
uSv = cpm / ratio ;
Serial.println(uSv);
uP = uSv * 100 ;
Serial.println(uP);
counts = 0;

}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include <SPI.h>
 
#define LOG_PERIOD 15000  //Период регистрации в миллисекундах, рекомендуемое значение 15000-60000.
#define MAX_PERIOD 60000  //Максимальный период регистрации.
 

unsignedlongcounts;//

unsignedlongcpm;//

unsignedintmultiplier;//

unsignedlongpreviousMillis;//

floatuSv;// Переменная для перевода в микроЗиверты

floatratio=151.0;// Коофициент для перевода импульсов в микроЗиверты

floatuP=;

constbyteinterruptPin=D2;// Порт ESP к которому подключен счетчик

voidtube_impulse(){//Функция подсчета имульсов

counts++;

}
 

voidsetup(){//

counts=;

cpm=;

multiplier=MAX_PERIOD/LOG_PERIOD;

Serial.begin(9600);

interrupts();

pinMode(interruptPin,INPUT);

attachInterrupt(digitalPinToInterrupt(interruptPin),tube_impulse,FALLING);//Определяем количество импульсов через внешнее прерывание на порту  

}
 

voidloop(){//Основной цикл

unsignedlongcurrentMillis=millis();

if(currentMillis-previousMillis>LOG_PERIOD){

previousMillis=currentMillis;

cpm=counts*multiplier;

Serial.println(cpm);

uSv=cpm/ratio;

Serial.println(uSv);

uP=uSv*100;

Serial.println(uP);

counts=;

}

}

Расписывать код не вижу смысла. Он неплохо прокомментирован. Основной принцип подсчета сводиться, к подсчету количества импульсов от трубки J350Br, используя прерывание на порту D2. После того как получили количество импульсов, переводим наши «попугаи» в микрозиверты и микрорентгены. Конечно без калибровки наши данные так и останутся «попугаями», поэтому лучше всего найти эталонный источник радиации и попробовать откалибровать наш счетчик.

Сборка

Первое, что нужно сделать, это настроить вольтаж на высоковольтном DC-DC с потенциометром. Для STS-5 нам нужно примерно 410V. Затем просто спаяйте все модули по схеме, я использовал однопроволочные провода, это повышает стабильность конструкции и даёт возможность собрать устройство на столе, а затем просто поместить его в кейс. Важный момент состоит в том, что нам нужно соединить минус на входе и выходе высоковольтного конвертера, я просто припаял штекер.

Так как мы не можем просто присоединить Ардуино к 400V, нам понадобится простая схема с транзистором, я просто спаял их навесным методом и обернул в термоусадочную трубку, резистор 10MΩ от +400V был закреплен прямо на коннекторе. Лучше сделать медный кронштейн для трубки, но я просто накрутил провод по кругу, всё работает нормально, не меняйте плюс и минус счетчика Гейгера. Соединяем дисплей съемным кабелем, тщательно его изолировал, так как он располагался очень близко к высоковольтному модулю.

Схема самодельного дозиметра.

Схема дозиметра на микроконтроллере

Прибор предназначен для измерения ионизирующих излучений, вызванных бета — и гамма-лучи и имеет следующие параметры:

  • Диапазон измеряемой дозы: 0 — 250 миллирентген/час
  • Напряжение питания: 2 – 3.3 В две батареи АА
  • Средний потребляемый ток: 0.5 мА при отключенной звуковой индикации
  • Время выхода на рабочий режим: 30 секунд
  • Период обновления показаний: 1 секунда

Прибор состоит из следующих функциональных блоков: генератор высокого напряжения для питания газоразрядного счетчика, формирователь импульсов счетчика, узел управления жидкокристаллическим дисплеем, блок звуковой индикации, и стабилизаторы напряжения для питания различных цепей устройства.

Синхронное управление всеми блоками обеспечивается микроконтроллером DD2. Высокое напряжение формируется преобразователем на транзисторе VT2 и трансформаторе T1

На затвор VT2 поступают импульсы частотой 244 Гц и скважностью примерно 4-15% от микроконтроллера DD2. В момент импульса транзистор открыт и в магнитопроводе T1 накапливается магнитная энергия

Схема самодельного радиометра.

При закрывании транзистора в обмотке I трансформатора формируется ЭДС самоиндукции, приводящая к короткому импульсу положительной полярности амплитудой порядка 60 В на стоке VT2. Это напряжение повышается обмоткой II и поступает на утроитель напряжения на диодах VD3-VD5 и конденсаторах C12-C14. Использование утроителя напряжения снижает требования к трансформатору и упрощает его конструкцию. Высокое напряжение порядка 400 В поступает на счетчик Гейгера BD1 через нагрузочный резистор R10.

Без стабилитронов напряжение на конденсаторах может превысить 800-900 В и привести к их пробою. Средний потребляемый ток по цепи T1-VT2 не превышает 0.3 мА при сопротивлении нагрузки от 40 МОм и выше.

Как сделать счетчик Гейгера из готового комплекта

Практически на всех крупных международных торговых онлайн-площадках можно заказать готовые наборы для изготовления счетчика Гейгера стоимостью от 2500–5000 руб. В каждом наборе проверенные детали и платы, а также подробная инструкция сборки.

Наиболее популярные модели комплектов счетчиков Гейгера:

  1. KKmoon для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM20, J305. Имеет звуковую и световую сигнализация, может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
  2. Baugger имеет модуль детектор ядерного излучения с ЖК-дисплеем, для обнаружения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Поддерживает большинство трубок Гейгера: M4011, Sts-5, Sbm 20, J305. Оборудован звуковой и световой сигнализацией может подключиться к микроконтроллеру, а затем отобразить на ЖК-дисплее. Совместим с компьютером (ПК) MatLab для сбора, анализа и обработки данных.
  3. Kshzmoto, набор деталей счетчика Гейгера с ЖК-дисплеем. Имеет блок питания 5 В или аккумулятор 3×1.5 В. Батарея 4×1.2 В, ток: 30–120 мА. Диапазон измерения 20–120 мР/ч гамма-лучей и 100–1800 мР/ч бета-лучей. Оснащен звуком и световой сигнализацией. Может поддерживаться рабочее напряжение трубки Гейгера 330–600 В.
  4. YINCHIE Mukuai54 DIY — модуль детектора ядерного излучения с ЖК-дисплеем DIY. Поддерживает большинство трубок Гейгера: M4011, STS-5, SBM 20, J305. Оборудован звуковым и световым звуком, может работать с ПК.

Таким образом, сделать счетчик Гейгера своими руками на Arduino Nano несложно. Можно самому подобрать комплектующие, и собрать измеритель по проверенной работоспособной схеме, а можно просто купить готовый набор и подключить его схему. Такие дозиметры работают ничуть не хуже тех, которые собираются на промышленных площадках. В сегодняшнее время иметь такое устройство в доме не будет лишним, особенно, отправляясь в путешествие, чтобы найти безопасное место для отдыха или на рынок, чтобы купить экологически чистые продукты.

См. также

  • Коронарный счётчик
  • http://www.u-tube.ru/pages/video/38781 принцип работы

Wikimedia Foundation
.
2010
.

Смотреть что такое «Счётчик Гейгера» в других словарях:

счётчик Гейгера-Мюллера
— Geigerio ir Miulerio skaitiklis statusas T sritis fizika atitikmenys: angl. Geiger Müller counter; Geiger Müller counter tube vok. Geiger Müller Zählrohr, n; GM Zählrohr, n rus. счётчик Гейгера Мюллера, m pranc. compteur de Geiger Müller, m; tube … Fizikos terminų žodynas

разрядный счётчик Гейгера-Мюллера
— — Тематики нефтегазовая промышленность EN electronic pulse height analyzer … Справочник технического переводчика

— … Википедия

— (Гейгера Мюллера счётчик), газоразрядный детектор, срабатывающий при прохождении через его объём заряж. ч ц. Величина сигнала (импульса тока) не зависит от энергии ч ц (прибор работает в режиме самостоят. разряда). Г. с. изобретён в 1908 нем.… … Физическая энциклопедия

Газоразрядный прибор для обнаружения ионизирующих излучений (a – и b частиц, g квантов, световых и рентгеновских квантов, частиц космического излучения и т. п.). Счётчик Гейгера – Мюллера представляет собой герметично запаянную стеклянную трубку … Энциклопедия техники

Гейгера счётчик
— Гейгера счетчик ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера… … Иллюстрированный энциклопедический словарь

ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера счетчик применяются… … Современная энциклопедия

Газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений: α и β частиц, γ kвантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах (См. Космические лучи) и … Большая советская энциклопедия

— газоразрядный детектор радиоактивных и др. ионизирующих излучений (а и бета частиц, у квантов, световых и рентгеновских квантов, частиц космич. излучения… … Большой энциклопедический политехнический словарь

Счётчик устройство для счёта чего либо. Счётчик (электроника) устройство для подсчета количества событий, следующих друг за другом (напр. импульсов) с помощью непрерывного суммирования, или для определения степени накопления какой… … Википедия

Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» – работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений

Закалка и мертвое время

Мертвое время и время восстановления в трубке Гейгера-Мюллера. Трубка не может производить дальнейшие импульсы в течение мертвого времени, а только генерирует импульсы меньшей высоты, пока не истечет время восстановления.

Идеальная трубка G – M должна генерировать одиночный импульс для каждого отдельного ионизирующего события, вызванного излучением. Он не должен давать паразитные импульсы и должен быстро вернуться в пассивное состояние, готовый к следующему событию излучения. Однако, когда положительные ионы аргона достигают катода и становятся нейтральными атомами, приобретая электроны, атомы могут быть подняты до повышенных уровней энергии. Затем эти атомы возвращаются в свое основное состояние, испуская фотоны, которые, в свою очередь, вызывают дополнительную ионизацию и тем самым ложные вторичные разряды. Если бы ничего не было сделано, чтобы противодействовать этому, ионизация продлилась бы и даже могла бы усилиться. Продолжительная лавина увеличит «мертвое время», когда новые события не могут быть обнаружены, и может стать непрерывной и повредить трубку. Поэтому для уменьшения мертвого времени и защиты трубки важна некоторая форма гашения ионизации, и используется ряд методов гашения.

Закалка газом

Трубки с самозатуханием или внутренним гашением останавливают разряд без внешней помощи, первоначально за счет добавления небольшого количества многоатомного органического пара, первоначально такого как бутан или этанол, но для современных трубок это галоген, такой как бром или хлор.

Если в трубку ввести плохой газовый гаситель, положительные ионы аргона во время своего движения к катоду будут многократно сталкиваться с молекулами гасителя газа и передавать им свой заряд и некоторую энергию. Таким образом, будут образовываться нейтральные атомы аргона, а ионы гасящего газа, в свою очередь, достигнут катода, получат от него электроны и перейдут в возбужденные состояния, которые будут распадаться за счет испускания фотонов, вызывая разряд в трубке. Однако эффективные молекулы-гасители при возбуждении теряют свою энергию не из-за испускания фотонов, а из-за диссоциации на нейтральные молекулы-гасители. Таким образом, не возникает паразитных импульсов.

Даже при химическом гашении в течение короткого времени после разрядного импульса существует период, в течение которого трубка становится нечувствительной и, таким образом, временно не может обнаружить прибытие любой новой ионизирующей частицы (так называемое мертвое время ; обычно 50–100 микросекунды). Это вызывает потерю счета при достаточно высоких скоростях счета и ограничивает эффективную (точную) скорость счета трубки G – M примерно 10 3 счета в секунду даже при внешнем гашении. В то время как трубка GM технически способна считывать более высокие скорости счета до того, как она действительно насыщается, связанный с этим уровень неопределенности и риск насыщения делают чрезвычайно опасным полагаться на более высокие показания скорости счета при попытке вычислить эквивалентную мощность дозы излучения на основе подсчета. темп. Следствием этого является то, что приборы с ионной камерой обычно предпочтительны для более высоких скоростей счета, однако современная технология внешнего гашения может значительно расширить этот верхний предел.

Внешняя закалка

Внешнее гашение, иногда называемое «активным гашением» или «электронным гашением», использует упрощенную высокоскоростную управляющую электронику для быстрого удаления и повторного приложения высокого напряжения между электродами в течение фиксированного времени после каждого пика разряда, чтобы увеличить максимальную скорость счета. и срок службы трубки. Хотя его можно использовать вместо охлаждающего газа, его гораздо чаще используют вместе с охлаждающим газом.

«Метод времени до первого счета» — это сложная современная реализация внешнего гашения, которая позволяет резко увеличить максимальную скорость счета за счет использования методов статистической обработки сигналов и гораздо более сложной управляющей электроники. Из-за неопределенности в скорости счета, вызванной упрощенной реализацией внешнего гашения, скорость счета трубки Гейгера становится крайне ненадежной, превышая приблизительно 10 3 импульсов в секунду. С помощью метода «время до первого счета» достижима эффективная скорость счета 10 5 отсчетов в секунду, что на два порядка больше, чем нормальный эффективный предел. Метод подсчета времени до первого значительно сложнее в реализации, чем традиционные методы внешнего гашения, и в результате этого он не получил широкого распространения.

Код программы счетчика Гейгера

Теперь, когда у вас есть готовая версия устройства или печатная плата устройства, мы можем загрузить на него код. Мы будем использовать Platform.io для программирования ESP8266, и для его настройки потребуется немало усилий. Поэтому, если вы впервые используете ESP8266, вам нужно будет пройти через процесс установки поддержки плат ESP8266 в Arduino IDE, а также настроить Platform.io в VScode для написания кода Arduino.

Скетч для этого проекта сильно зависит от библиотек Adafruit_ILI9341 и Adafruit GFX. Библиотека ILI9341 позволяет нам напрямую взаимодействовать с дисплеем, поскольку он использовался для создания пользовательского интерфейса для дисплея. Мы создадим два основных интерфейса, один будет домашней страницей, а другой – меню настроек. На главной странице будет отображаться важная информация, такая как мощность дозы, количество импульсов в минуту и общая накопленная доза с момента включения устройства, в то время как меню настроек, с другой стороны, позволит пользователям устанавливать такие параметры, как единицы дозы, оповещение, порог и калибровочный коэффициент, который связывает СРМ с мощностью дозы. Все настройки сохраняются в EEPROM, что гарантирует, что данные не будут потеряны при отключении питания от устройства.

Чтобы помочь нам получить доступ к EEPROM, мы будем использовать библиотеку EEPROM, созданную для ESP8266. Это одна из библиотек, которые автоматически устанавливаются при добавлении ссылки на плату ESP8266 в Arduino IDE. Код проекта довольно длинный, но обеспечивает всю функциональность, необходимую счетчику Гейгера.

Подключите ESP8266 к компьютеру и загрузите на него код. Теперь вы должны увидеть, как на экране появляется домашняя страница, как показано на рисунке ниже.

Чтобы опробовать устройство, было проведено несколько тестов. Например, небольшая кучка урановой руды регистрируется как умеренно радиоактивная при более чем 350 CPM.

Торированная мантия фонаря заставляла счетчик регистрировать излучение более, чем 1500 CPM, если ее удерживать очень близко к трубке.

Счетчик Гейгера потребляет около 180 мА при напряжении 3,7 В, поэтому батарея емкостью 2000 мАч должна работать около 11 часов без подзарядки.

Пошаговая инструкция изготовления счетчика Гейгера на Arduino Nano своими руками

Первое, что нужно сделать, это установить с помощью этого потенциометра напряжение на высоковольтном DC-DC, для STS-5 это примерно 410 V. Затем просто соединяют все модули по этой схеме.

Поскольку Arduino Nano нельзя подключать к 400 В, выполняют простую транзисторную схему: двухточечная проводка помещается в термоусадочную трубку и прямо в разъем вставляется резистор 10 МОм от + 400 В.

Дальше подключают дисплей к подсоединяемому кабелю, тщательно изолируют, поскольку он очень близко расположен к высоковольтному модулю.

После того как сборка сделана, устройство размещают в футляр, и проверяют работоспособность. Скорее всего, он покажет допустимый уровень радиации.

Такая схема с Arduino Nano имеет большие возможности для реконструкции, например, можно добавить большой дисплей, чтобы рисовать графику, и использовать модуль Bluetooth, чтобы передавать информацию дистанционно.

Необходимые компоненты схемы детектора

Для того чтобы собрать представленную схему потребуются приобрести следующие детали:

  1. Преобразователь высокого напряжения NoEnName_Null. Вход 3–5 В, выход до 300–1200 В. Размер модуля: около: 25×48 мм. Выходной ток максимум 50 мА, регулируемый модуль блока питания.
  2. Зарядное устройство Tikta Mini MICRO USB 1A TP4056. Литий-ионная плата 1×5 V позволяет заряжать аккумулятор с помощью разъема Mini USB или входа 4.5–5.5 В.
  3. Преобразователь напряжения DROK Mini DC Volts 1V — 5V, неизолированный модуль BOOST. Размеры печатной платы: 14.1×18.8×5.5 мм, входное напряжение: 1–5 В постоянного тока, выходное напряжение: 5.1–5.2 В постоянного тока, одиночный литиевый вход с выходным током 1–1.5 A.
  4. Arduino Nano V3.0 — плата ELEGOO Nano CH340 / ATmega328P без USB-кабеля. Совместимая с Arduino Nano V3.0.Nano использует чипы ATmega328P и CH340, с большим количеством аналоговых входных контактов и встроенной перемычкой + 5V AREF. Есть возможности макета Boarduino и Mini + USB с меньшими размерами, которое хорошо работает с Mini или Basic Stamp. Может получать питание через USB-соединение Mini-B, нерегулируемый внешний источник питания 7–12 В (контакт 30) или регулируемый внешний источник питания 5 В (контакт 27). Источник питания автоматически выбирает источник с самым высоким напряжением.
  5. OLED-дисплей HiLetgo 0,91 »  для Arduino STM32, подсветка не нужна, поскольку имеется самоподсветка. Цвет дисплея: синий. Использует распространенную шину I2C и работает на драйвере дисплея SSD1306. OLED с высоким разрешением для любого проекта микроконтроллера. 128×32 пикселей дает хороший четкий текст, может работать от 3.3 В. Разборчивый текст даже с 4-мя строками. Напряжение 5 В.
  6. Комплект резисторов 10М и 10К, соответствующих требованиям RoHS.
  7. Монолитный многослойный керамический конденсатор 470pf Hilitchi 550Pcs, допуск емкости: ± 5%. Основной материал: керамика. Цвет: желтый. Отличная влагостойкость, миниатюрный размер, большая емкость, надежная работа. Широкое применение в компьютерах, обработке данных, телекоммуникациях и промышленном управлении.
  8. Мини-кнопочный переключатель DPDT с мгновенным выходом, uxcell 6-контактный квадратный 7×7 мм, количество контактов: 6, шаг штифта: 4.5×1 мм, длина штифта 3.5 мм. Материал пластик, вес: 24 г.

Фото счетчика Гейгера

Также рекомендуем просмотреть:

  • Полировка фар своими руками
  • Строительные леса своими руками
  • Точилка для ножей своими руками
  • Антенный усилитель
  • Восстановление аккумулятора
  • Мини паяльник
  • Как сделать электрогитару
  • Оплетка на руль
  • Фонарик своими руками
  • Как заточить нож для мясорубки
  • Электрогенератор своими руками
  • Солнечная батарея своими руками
  • Течет смеситель
  • Как выкрутить сломанный болт
  • Зарядное устройство своими руками
  • Схема металлоискателя
  • Станок для сверления
  • Нарезка пластиковых бутылок
  • Аквариум в стене
  • Врезка в трубу
  • Стеллаж в гараж своими руками
  • Симисторный регулятор мощности
  • Фильтр низких частот
  • Вечный фонарик
  • Нож из напильника
  • Усилитель звука своими руками
  • Трос в оплетке
  • Пескоструйный аппарат своими руками
  • Генератор дыма
  • Ветрогенератор своими руками
  • Акустический выключатель
  • Воскотопка своими руками
  • Туристический топор
  • Стельки с подогревом
  • Паяльная паста
  • Полка для инструмента
  • Пресс из домкрата
  • Золото из радиодеталей
  • Штанга своими руками
  • Как установить розетку
  • Ночник своими руками
  • Аудио передатчик
  • Датчик влажности почвы
  • Древесный уголь
  • Wi-Fi антенна
  • Электровелосипед своими руками
  • Ремонт смесителя
  • Индукционное отопление
  • Стол из эпоксидной смолы
  • Трещина на лобовом стекле
  • Эпоксидная смола
  • Как поменять кран под давлением
  • Кристаллы в домашних условиях

Помогите проекту, поделитесь в соцсетях 😉

Принцип действия счётчика Гейгера

По своей конструкции счетчик Гейгера довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается высокое напряжение (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.

Обратный процесс, в результате которого газовая среда возвращается в исходное состояние, происходит сам собой. Под воздействием галогенов (обычно используется бром или хлор) в данной среде происходит интенсивная рекомбинация зарядов. Процесс этот происходит значительно медленнее, а потому время, необходимое для восстановления чувствительности счетчика Гейгера, – очень важная паспортная характеристика прибора.

Несмотря на то что принцип действия счетчика Гейгера довольно прост, он способен реагировать на ионизирующие излучения самых различных видов. Это α-, β-, γ-, а также рентгеновское, нейтронное и ультрафиолетовое излучения. Все зависит от конструкции прибора. Так, входное окно счетчика Гейгера, способного регистрировать α- и мягкое β-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector