Понятие заземления и заземляющего контура

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

  • Наличие защитного заземления.
  • Система выравнивания потенциалов.
  • Дополнительная (усиленная) изоляция токоведущих частей.

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Конструктивные особенности

Как уже было сказано выше базовым элементом конструкции являются стержни заземления. Их количество, материал, диаметр и длина зависят от условий монтажа и показателя удельного сопротивления грунта растеканию тока. Чем выше сопротивление, тем больше общая длина и/или диаметр, количество точек установки заземлителей.

Стержни имеют резьбу на концах и соединяются между собой посредством муфт. При этом для обеспечения лучшей токопроводимости в местах их установки конструктив смазывают токопроводящей смазкой (пастой).

Зарубежные производители используют цапфовое безмуфтовое соединение, оно более контактное и его не нужно смазывать пастой. То есть получается самозакрывающаяся конструкция (на примере ниже показан разрез в месте соединения).

Для облегчения монтажа в землю в состав комплектов входят наконечники и удароприемные головки. Производители из России делают эти компоненты с резьбой, зарубежные исключают риски, возникающие при резьбовом контакте, особенно при забивании, и соединяют элементы надежно в стык.

В месте выхода последнего (верхнего) заземлителя всю конструкцию подключают с помощью зажима к системе молниезащиты или шине заземления

Геометрия зажима значения не имеет (диагональный или крестовой), важно лишь чтоб его материал в плане коррозии не «конфликтовал» с материалом заземлителей и заземляющих проводников

Монтаж контура заземления

ПУЭ и другие нормативы регламентируют и порядок монтажа электродов. При соблюдении правил заземлитель прослужит положенный срок.

Земляные работы

На месте монтажа роют яму глубиной 0,7 м. Часто в целях экономии используют траншею, вырытую для прокладки кабеля от ЛЭП к дому.

Установка конструкции

Дальше действуют в такой последовательности:

  1. Заглубляют в дно выемки вертикальные электроды.
  2. Приваривают горизонтальные перемычки так, чтобы они лежали на дне выемки.
  3. Сбивают окалину со швов, заодно проверяя ударами молотка их качество.
  4. Покрывают места соединений битумом и обматывают смоляной лентой с половинным нахлестом, а если грунт относится к агрессивным – в 2 слоя.
  5. Подсоединяют к одному из электродов заземляющую жилу.
  6. Производят обратную засыпку выемки грунтом без мусора и камней, трамбуя его послойно.

Если провод не имеет изоляции, его обматывают смоляной лентой на 300 мм ниже поверхности земли и на 200 выше.

Стержни погружают в грунт забивкой, вдавливанием или ввертыванием (круглого сечения). Используют копер или установку ПЗД-12.

После монтажа конструкции оформляют акт на скрытые работы со схематическим чертежом, показывающим привязку электродов к видимым стационарным ориентирам на поверхности.

Ввод в дом

Заземляющие проводники вводят в дом не менее, чем в 2 местах. Вдоль стен их прокладывают на высоте 0,4-0,6 м от пола, от других поверхностей отступают 50-100 см. Шаг крепежных элементов – 0,6-1 м.

Прилегание к стене допускается только в сухих помещениях и в условиях отсутствия химически активной среды. В остальных случаях используют опоры, обеспечивающие наличие зазора между проводником и конструкцией.

Если в роли заземляющего проводника выступает полоса, ее пристреливают дюбелями, используя строительно-монтажный пистолет. При наличии в конструкциях здания закладных ее можно приварить к ним.

Проверка и контроль

Даже самые сложные методики расчета сопротивления растеканию не способны учесть всех факторов и точно предсказать его значение. Поэтому после устройства системы ее резистивность проверяют специальными омметрами с низким входным сопротивлением, например М-416 или Ф-4103.

Эти работы выполняет лицензированная организация, по их результатам составляют акт. Он является основанием для ввода системы в эксплуатацию. Со временем сопротивление растеканию может вырасти.

Этому способствуют:

  • коррозия основного металла и сварных швов;
  • изменение состава грунта;
  • снижение влажности, например из-за изменения характера течения грунтовых вод после земляных, мелиоративных или иных работ.

Поэтому нужно периодически приглашать специалистов для замера резистивности контура. Для частного дома рекомендуемый временной интервал составляет 3 года.

Немного физики

Электрический ток протекает между точками, которые имеют разный электрический потенциал – в первом приближении, разную величину электрического заряда. Чтобы ток побежал, эти точки нужно соединить проводящей средой – к примеру, медной проволокой. Такая ситуация в электрической розетке: в одном из её гнёзд ±220 В, а в другом — ровным счётом 0 В. Когда эти гнёзда замыкаются через включённый в розетку прибор, между ними начинает течь ток, который, собственно, и вдыхает жизнь в холодильник, фен, утюг, компьютер и т.д.

Земля считается абсолютным нулём – её заряд всегда 0 В. Это ключевой факт. А тело человека проводит ток – иногда не хуже, чем медный кабель.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  1. Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  2. Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  1. Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  2. Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Заземляющая шина в распределительном шите

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению). Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи)

Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже)

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Главная заземляющая шина

Внешний контур

  • Сначала надо выбрать место, где будет располагаться внешняя часть контура. Оптимальное расстояние между такими местами и домом равно 1 метру.
  • Возможность нахождения людей рядом с контуром необходимо исключить полностью.
  • Лучше выбирать территорию под статичными элементами интерьера.
  • Песочные грунты могут стать источником дополнительной проблемы.
  • После подбора подходящей территории можно приступать к земляным работам. Требуется подготовить траншею треугольной формы. Допустимый размер сторон – 1,2 метра. Глубина – от 50 до 70 сантиметров.
  • Металлические элементы контура просто вбиваются внутрь траншеи, при помощи подготовленного заранее комплекта.
  • Верхние концы потом соединяются с использованием сварочного оборудования.

Когда все этапы выполнены, переходят к засыпке траншей. В этот момент считается, что наружные работы пришли к заключительному этапу.

Виды контуров заземления

Для эффективной работы системы заземления оно должно распределять ток “стекания” в землю на несколько электродов увеличивающих площадь рассеивания. Существует два главных вида систем заземления.

Контур заземления — треугольник

В таком виде контура используется три штыря, которые сварены с помощью полос в треугольник с равными сторонами. Между электродами длина выбирается в зависимости от длины заглубления электрода до двух таких глубин. Т.е. для длины электрода (заглубление) 2м, сторона треугольника будет 2-4м.

Контур заземления — треугольник

Линейный

При невозможности сделать замкнутую фигуру из-за конфигурации участка составляется вариант из нескольких электродов, их располагают полукругом или в линию. Между вбитыми штырями промежуток должен составлять 1-1,5 глубины погружения штырей. Минус способа — большое число электродов.

Контур заземления — линейный

Предлагаемые виды самые используемые при проектировании и устройстве систем заземления. Его можно сделать в виде любой геометрической фигуры (прямоугольник, круг и т.д.), но надо понимать что это потребует соответствующее количество заземляющих штырей. Основное достоинство таких систем — при разрыве соединения между электродами функции системы заземления сохраняются.

Важно! Линейный контур работает по принципу гирлянды и повреждение перемычки выводит из эксплуатации определенный его участок.

Предназначение: цели и задачи

В основе всех PE-систем лежит общий принцип действия. Несмотря на это, они применяются для решения разных задач.

Защита от попадания молнии

Молния представляет собой мощный электрический разряд между облаками и поверхностью планеты или заземленным объектом.

Пробой возникает в месте наименьшего сопротивления. Это значит, что чем выше объект и чем больше у него проводимость, тем вероятнее удар молнии. В «группу риска» входят:

  • дома, особенно с мокрыми стенами;
  • деревья;
  • металлические конструкции;
  • электрокабели;
  • трубопроводы;
  • люди на открытой местности или на крыше здания.

Чтобы сделать разряд условно контролируемым, применяют молниеотводы – высокие заземленные металлические мачты.

Максимально допустимое сопротивление заземлителя нормируется РД 34.21.122-87 и другими документами. Оно зависит от категории здания по молниезащите:

  • I и II – 10 Ом;
  • III – 20 Ом.

При ударе молнии возникает импульс напряжением в сотни киловольт. Если громоотвод расположен вблизи здания, возможен пробой на любую из следующих систем:

  • трубопроводы;
  • электропроводка;
  • коммуникационные сети;
  • бытовые приборы.

От импульсного перенапряжения

В сети случаются кратковременные периоды увеличения напряжения, когда оно может в несколько раз превышать номинальное. Причиной этого могут стать:

  • попадание молнии в громоотвод или линию электропередач;
  • короткое замыкание;
  • переключение мощных индуктивных потребителей – двигателей и трансформаторов.

Импульсные перегрузки способны вывести из строя дорогую чувствительную аппаратуру. Для ее защиты применяют ограничитель перенапряжения. Такие устройства называют по-разному. Вариант для электроустановок вольтажом до 1 кВ принято именовать устройством защиты от импульсных перенапряжений (УЗИП).

Оно сбрасывает избыток энергии в землю. Соединение с контуром PE образуется в результате пробоя воздушного промежутка или особого полупроводникового прибора – варистора.

Существует 3 разновидности устройств защиты от импульсных перенапряжений:

Класс УЗИП Нейтрализуемый прибором поражающий фактор Место установки
I Грозовые разряды Ввод питающей сети в здание (РУ или ГРЩ)
II Переключения в сети и остаточные перенапряжения после разрядов молнии, не снятые УЗИП I класса Распределительные щиты
III Перекос фаз и остаточные перенапряжения, высокочастотные помехи Вблизи защищаемого прибора

Область применения УЗИП III класса – медицина и другие отрасли, использующие дорогое высокочувствительное оборудование.

Защита людей

В результате разрушения изоляции возможно замыкание фазы на металлический корпус прибора или иной нетоковедущий элемент. Коснувшись его, пользователь получит электротравму. Для предотвращения таких ситуаций корпус подключают к PE-контуру.

Действие системы основано на стремлении электрического тока двигаться по пути наименьшего сопротивления: у человека оно выше, чем у заземлителя.

Если установка запитана через устройство защитного отключения (УЗО), то при замыкании фазы на заземленный корпус она сразу будет обесточена.

Изготовление заземляющего контура для квартиры

Любое заземление должно соответствовать нормам, приведенным в Правилах устройства электроустановок (ПУЭ) в разделе 1.7. В нормативном документе указываются:

варианты заземлителей;

используемые материалы для всех элементов заземляющего контура;

характеристики (в том числе, сопротивления).

Заземлитель можно выполнить из:

  1. Горизонтальных электродов (монтируемых у поверхности или с заглублением до 70 см);
  2. Вертикальных электродов (также с монтажом у поверхности или с заглублением).

В общем случае в конструкцию входят как горизонтальные, так и вертикальные стержни, расчет для каждого вида ведется отдельно.

Исходные данные для расчета:

  • Сопротивление контура, величина которого указывается в ПУЭ для каждой их схем электроснабжения.
  • Материал электродов. Допускается изготовление заземлитель из углеродистой стали, оцинкованной углеродистой стали, меди.
  • Конфигурация электродов – прут, труба, полоса, профиль.
  • Удельное сопротивление грунта. Параметр зависит от его характера (суглинки, песчаники, торф и пр.), влажности, реакции (кислая или щелочная) и других факторов. Найти сведения можно в справочниках.

Расчет позволяет определить конфигурацию заземлителя, которая обеспечит нормативное сопротивление – количество стержней их длину, расстояние между ними и пр.

Ввиду сложности используемых формул для различных электродов рекомендуется пользоваться онлайн калькуляторами или специальными программами для расчета заземления, которых достаточно в сети.

После расчета:

  1. Готовят электроды из выбранного материала – осуществляют их порезку по длине.
  2. Производят сборку конструкции. Электроды из стали соединяют сваркой, из меди – с использованием заклепок или болтовых соединений.
  3. Крепят контакт для подключения заземляющего проводника. Он выполняется из того же материала, что и электроды заземлителя, а по длине рассчитывается таки образом, чтобы место подсоединения выступало не менее, чем на 20 мм над поверхностью почвы.
  4. Готовят траншею под укладку заземлителя.
  5. Собранный заземлитель устанавливают в траншею.
  6. Проводят засыпку грунтом, при этом не допускают попадания в него строительного мусора.
  7. Подключают заземляющий проводника расчетной длины (ее должно хватить до ввода в квартиру).
  8. Измеряют сопротивление полученной конструкции измерительным мостом для проверки соответствия нормативным требованиям.
  9. Прокладывают заземляющий проводник по стоякам или внешней стене дома.

Варианты, которые использовать запрещено

При установке бытовой техники и разводке электросети запрещены такие варианты:

  • Подключение устройств к трехпроводной сети, заземляющий провод которой не подключен («висит в воздухе»). Вариант очень опасен – при неполадках в одном из приборов корпуса остальных неизбежно окажутся под потенциалом.
  • «Зануление» приборов. Термин подразумевает подключение заземляющего проводника к нулевому проводу. Вариант работоспособен только при полностью исправной технике и точном соблюдении фазировки (фаза-ноль). В противном случае на корпусах приборов оказывается напряжение 220(230)В.
  • Подключение заземляющего проводника к батареям центрального отопления, стоякам водоснабжения и другим «естественным» заземлителям. Метод строжайше запрещен, поскольку нулевой потенциал га трубах/батареях не гарантирован из-за коррозии, вставок из изоляционных материалов, В результате получается система с «висящим» заземлением (уже упоминалась выше), но опасности подвергаются и жильцы других квартир.
  • Монтаж заземляющего проводника на металлические опоры ЛЭП. Это работает только в случае целостности изоляторов, на которых провешены провода. В случае их пробоя на опоре может появится достаточно высокий потенциал, под которым окажутся и корпуса техники.

Схемы заземления: какую выбрать

Заземляющая система загородного коттеджа зависит от варианта сетевой подводки к ней. Часто используют принцип TN-C. При напряжении 220В сетевое напряжение обеспечивает воздушная двухпроводная линия либо двухжильный кабель. При 380В применяется четырехпроводная линия либо четырехжильный кабель.

TN-C-S

В этом случае PEN-ввод делят на параллельные проводники.

PEN-проводник, размещенный во вводном шкафу, подразделяют на 3 шины:

  • нейтраль – N;
  • земля – РЕ;
  • распределитель на 4 соединения.

Шину N размещают на изоляторах, РЕ соединяют с корпусом вводного шкафа. Друг с другом проводники не контактируют. К распределителю подводят контур. Заземлитель соединяют медной перемычкой сечением от 10 мм² с шиной N.

ТТ

В этом случае шины не расщепляют во вводном щитке, т.к. нейтраль и земля уже разделены в сети. Только проводник РЕ соединяют с заземлителем.

Слабые места заземляющего контура

У заземления есть свои слабые места, на которые нужно обратить пристальное внимание. Уязвимое место – соединение заземляющего провода с контуром

Обычно оно находится на открытом воздухе и, соответственно, подвергается воздействию дождя и снега. Хороший мастер при установке поместит точку, где установлена клемма, в подземный лючок, который значительно облегчит периодический осмотр. А бывают случаи, когда клемма расположена под землёй, и тогда только копать, причём очень аккуратно

Уязвимое место – соединение заземляющего провода с контуром. Обычно оно находится на открытом воздухе и, соответственно, подвергается воздействию дождя и снега. Хороший мастер при установке поместит точку, где установлена клемма, в подземный лючок, который значительно облегчит периодический осмотр. А бывают случаи, когда клемма расположена под землёй, и тогда только копать, причём очень аккуратно.

ФОТО: landshaftdizajn.ruПри осмотре клеммы нужно подтянуть болты и убедиться, что заземляющий провод не отсоединился от наконечника

Согласно тому же ПТЭЭП, элементы заземления заменяются, если коррозия «съела» более половины толщины металла.

Назначение и контролируемые параметры

Основное назначение заземления – обеспечение надёжного соединения электропроводящих частей устройств и приборов с металлической конструкцией особой формы, имеющей надёжный контакт с грунтом.

Профессионалы называют это сооружение заземлителем. Он представляет собой набор металлических заготовок (труб, отрезков арматуры или профилей), соединённых между собой методом сварки.

Надёжность функционирования такой системы зависит от общего сопротивления цепочки заземления, образуемой соединительными шинами и самой конструкцией заземлителя. Чем меньше значение этой величины – тем более безопасной будет эксплуатация оборудования или приборов, для которых предусматривается защита.

В процессе обустройства заземляющего контура подбором соответствующей формы конструкции стараются искусственно увеличить площадь контакта её элементов с землёй.

Того же эффекта удаётся достичь, если умышленно повысить процентное содержание солей в почвах, имеющих непосредственный контакт с металлическими частями заземлителя. Указанные меры способствуют снижению сопротивления стеканию тока в землю, что гарантирует надёжность работы всего контура заземления в целом.

С целью контроля значения этого показателя организуется техническое обслуживание заземляющих систем, предполагающее обязательный замер указанного параметра.

При обнаружении значительных отклонений от требований ПУЭ производится изъятие и ремонт заземляющих устройств, по окончании которого сопротивление растеканию проверяется повторно.

Подобные же действия предпринимаются и в тех случаях, когда необходимо повысить эффективность защиты особо опасных участков электрооборудования.

Устройство контура заземления

В состав системы входят такие компоненты:

  1. Главная Pe-шина. Находится в распределительном щите внутри здания. К ней подключены кабели от розеток и электроприборов.
  2. Электрод-заземлитель. Так называется заглубленная в грунт конструкция.
  3. Проводник, связывающий оба вышеописанных компонента. В этом качестве используют стальную полосу толщиной до 5 мм или кабель.

В производственных зданиях в качестве общей шины часто используют контур, проложенный внутри помещений по периметру.

Заземляющий электрод

Самый простой электрод – вбитый в землю стальной прут, труба или уголок. Для снижения сопротивления растеканию заряда заземлитель формируют из нескольких таких элементов, соединяя их горизонтальными перемычками.

Описанный вариант недолговечен, т.к. металлопрокат корродирует, а ржавчина имеет высокую резистивность.

Более длительным ресурсом обладают электроды с защитным покрытием:

  • цинковым;
  • медным.

Второй вариант дороже, но эффективнее, т.к. обладает низким сопротивлением.

Работоспособность системы зависит не только от резистивности заземлителя, но и от проводимости грунта. На нее влияют такие факторы:

  • состав почвы;
  • влажность;
  • концентрация солей.

С увеличением глубины резистивность грунта резко снижается. Поэтому широкое распространение получили сборные (модульные) электроды, погружаемые на десятки метров. Изделие состоит из секций с резьбой или иным соединительным элементом.

Первую из них оснащают заостренным наконечником и вбивают в грунт, пока на поверхности не останется только хвостовик. Затем навинчивают или приваривают следующую секцию и продолжают заколачивание.

Защита заземления

Наружные элементы Pe-системы нуждаются в защите от коррозии, т.к. она приводит к негативным результатам:

  • увеличению сопротивления в зоне контакта с грунтом и в местах соединений отдельных компонентов;
  • уменьшению сечения проводников, вследствие чего те разрушаются при протекании больших токов.

Заглубляемую часть электродов защищают покрытием из цинка или меди либо помещают в бетон. Стыки перед обратной засыпкой грунта обматывают смоляной лентой.

Наземную часть обмазывают битумом. Его заливают и внутрь электрода, если в этом качестве используется труба.

Некоторые материалы несовместимы, т.к. дают в зоне контакта гальваническую коррозию. С учетом этого запрещено размещать медные заземлители рядом со стальными, в т.ч. арматурой фундаментов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector