Химические свойства соляной кислоты и её применение

Интересные факты

Приведем ряд фактов о хлороводородной кислоте, которые удивят обывателя:

  1. Хлористый водород способен полностью исправиться. Дело в том, что при высоких температурах соединение переходит в свое основное агрегатное состояние – газообразное и насыщает атмосферу молекулами хлора и водорода.
  2. Соляная кислота вырабатывается париетальными клетками желудка человеческого организма в небольшой концентрации (0,3%). Она создает необходимую кислотность среды, в которой наиболее активно протекают ферментативные процессы расщепления питательных веществ.
  3. При пониженной кислотности желудка, в нем развиваются лактобактерии. Данный факт указывает на еще одно свойство HCl – способность уничтожать бактерии. Данное свойство выражает в еще одной её функции в организме человека – бактерицидной.

Соляная кислота Факты

Хлористый водород – это соединение, состоящее из соотношения водорода и хлора один к одному., Без присутствия молекул воды хлористый водород является бесцветным, но токсичным газом. При добавлении воды водород высвобождает многие из своих молекул водорода с образованием сильнокислого раствора. Чуть более 97% молекулярной массы HCl приходится на один хлорид-ион. Этот хлорид-ион имеет атомную массу 35,543, а ион водорода – атомную массу 1,00794. Поскольку имеется только один атом каждого, молярная масса HCl рассчитывается путем сложения этих двух цифр – 36,46094 г / моль. Как уже упоминалось, формулой хлористого водорода является HCl.

В случае молекулярной массы результаты зависят от количества молей HCl. Например, в растворе, где имеется достаточное количество атомов хлористого растворенного газа (Cl2) для числа атомов молекулярного водорода (H2), мы можем с уверенностью сказать, что 4 моля HCl будут давать 4,00 моль HCl.

Используя уравнение Масса HCl = Моль HCl х Молярная масса HCl, мы можем определить, что 4,00 моль х 36,46 г моль-1 составляет 146 г.

Плотность соляной кислоты, pH, температура плавления и температура кипения зависят от концентрации. Например, 10% раствор HCl имеет плотность 1048 кг / л, pH -0,5, температуру плавления -18 ° C и температуру кипения 103 ° C. 30% раствор HCl имеет плотность 1,149 кг / л, pH -1, температуру плавления и кипения -52 ° C и 90 ° C соответственно.

Получение

Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре, полученная таким способом кислота называется синтетической. Также соляную кислоту получают из абгазов — побочных газов, образующихся при различных процессах, например, при хлорировании углеводородов. Хлороводород, содержащийся в этих газах, называется абгазным, а полученная таким образом кислота — абгазной. В последние десятилетия доля абгазной соляной кислоты в объёме производства постепенно увеличивается, вытесняя кислоту, полученную сжиганием водорода в хлоре. Но полученная методом сжигания водорода в хлоре соляная кислота содержит меньше примесей и применяется при необходимости высокой чистоты.

В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии концентрированной серной кислоты на поваренную соль:

NaCl +H2SO4→150 ∘CNaHSO4 +HCl{\displaystyle {\ce {NaCl\ +H2SO4->NaHSO4\ +HCl}}}.

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

2NaCl +H2SO4→550 ∘CNa2SO4 +2HCl{\displaystyle {\ce {2NaCl\ +H2SO4->Na2SO4\ +2HCl}}}.

Возможно получение путём гидролиза хлоридов магния, алюминия (нагревается гидратированная соль):

MgCl2⋅6H2O→t, ∘CMgO +2HCl +5H2O{\displaystyle {\ce {MgCl2.6H2O->MgO\ +2HCl\ +5H2O}}},
AlCl3⋅6H2O→t, ∘CAl(OH)3 +3HCl +3H2O{\displaystyle {\ce {AlCl3.6H2O->Al(OH)3\ +3HCl\ +3H2O}}}.

Эти реакции могут идти не до конца с образованием основных хлоридов (оксихлоридов) переменного состава, например:

2MgCl2+H2O⟶Mg2OCl2+2HCl{\displaystyle {\ce {2MgCl2 + H2O -> Mg2OCl2 + 2HCl}}}

В промышленности хлороводород получают реакцией горения водорода в хлоре:

H2+Cl2⟶2HCl{\displaystyle {\ce {H2 + Cl2 -> 2HCl}}}

Хлороводород хорошо растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl{\displaystyle {\ce {HCl}}}, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl{\displaystyle {\ce {HCl}}} ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Последующее лечение

Первая медицинская помощь оказывается медиками, приехавшими на вызов. Они проводят быстрый осмотр больного и сбор анамнеза, проверяют его жизненные показатели (пульс, артериальное давление, дыхание и сатурацию). Затем они приступают к оказанию первой помощи. Ее объем зависит от способа попадания хлористого водорода в организм и от состояния пациента. Первая медицинская помощь может состоять из следующих компонентов:

  • промывания желудка через зонд;
  • подключения капельницы с растворами;
  • введения обезболивающих препаратов;
  • медикаментозной регуляции жизненных показателей;
  • одевания кислородной маски;
  • обработки ожогов;
  • искусственной вентиляции легких;
  • сердечно-легочной реанимации.

После оказания первой помощи медики транспортируют больного в стационар. В зависимости от его состояния, он может быть госпитализирован в отделение токсикологии, реанимации, офтальмологии, хирургии. При обширных поражениях кожи лечение проводится в ожоговых центрах. Длительность лечения зависит от состояния больного и обширности поражения внутренних органов.

Отравление хлористым водородом – тяжелое и опасное состояние. Его лечение проводится в условиях стационара. Первое, что следует сделать при отравлении, – вызвать скорую помощь. До приезда медиков можно начать самостоятельно помогать ему, обеспечив покой и поступление свежего воздуха, промыть пораженные участки кожи водой.

Соляная кислота (HCl, хлористоводородная кислота, хлористый водород) – бесцветная едкая жидкость со специфическим запахом, одна из самых сильных кислот, способная растворять многие металлы. Получается путем растворения газообразного хлороводорода в воде.

На воздухе соляная кислота дымится, т. к. выделяющийся HCl образует с водяным паром мельчайшие капли, туман.

Хлористый водород, используемый в производстве, имеет желто-зеленый цвет из-за примесей солей железа и хлора. Промышленное применение его очень широко:

  • гидрометаллургия драгоценных металлов;
  • гальванопластика;
  • производство хлористых солей;
  • дубление и окрашивание кожи в кожевенной промышленности;
  • изготовление клеев, спиртов, кислот;
  • фармацевтическое производство;
  • текстильная промышленность и т. д.

В концентрации от 0,3 до 0,5% соляная кислота содержится в организме в обычных условиях, являясь основным компонентом желудочного сока. Агрессивные свойства позволяют ей эффективно защищать организм от попавших в ЖКТ вирусов и бактерий. Помимо защитной функции, соляная кислота способствует нормальному процессу пищеварения, стимулирует работу поджелудочной железы, участвует в синтезе гормонов, под ее воздействием происходит дозревание пищеварительных ферментов желудочного сока.

В концентрации от 24 до 38% обладает высокой токсичностью, в связи с чем оборот кислоты подобной насыщенности в РФ ограничен. Особую опасность при работе с концентрированными растворами HCl представляют туманы, образующиеся при ее контакте с воздухом, из-за способности вызывать поражение глаз и дыхательной системы. При попадании на кожу концентрированная кислота вызывает химический ожог.

Смертельная доза при приеме внутрь – 15-20 мл концентрированной кислоты.

Отравление парами и туманами соляной кислоты происходит, как правило, в промышленных и лабораторных условиях и обычно связано с возникновением аварийных ситуаций:

  • разгерметизация емкостей с кислотой на производстве;
  • нарушение целостности тары при транспортировке;
  • коррозия стальной аппаратуры;
  • повреждение вентиляционных систем.

В таких случаях особенно опасно находиться с наветренной стороны на нижних этажах зданий, в подвальных помещениях, т. к. пар хлористого водорода тяжелее воздуха и, опускаясь вниз, перемещается движением воздушных масс.

Помимо экстренных ситуаций, причиной отравления могут стать нарушение технологического процесса, пренебрежение средствами индивидуальной защиты и несоблюдение техники безопасности на рабочем месте.

Отравиться соляной кислотой в быту можно в нескольких случаях:

  • использование концентрированного раствора для чистки сантехники, утвари, выведения въевшихся пятен;
  • приготовление растворов для наружного применения с целью самостоятельного лечения в домашних условиях;
  • вдыхание паров при переливании кислоты.

Способы получения, техника безопасности

Получить соляную кислоту можно с помощью растворения газообразного хлороводорода в воде. Хлороводород синтезируют путем взаимодействия водорода с хлором. Кислота, которую получают данным методом, называется синтетической. Другим способом синтеза соляной кислоты является получение соединения из абгазов, которые представляют собой побочные газы, сформированные в разных химических процессах, к примеру, при хлорировании углеводородов. Хлороводород, входящий в состав этих газов, называют абгазным. Полученная рассмотренным методом кислота носит название «абгазная». В последние десятилетия доля абгазной соляной кислоты в объеме производства постепенно увеличивается, вытесняя кислоту, полученную сжиганием водорода в хлоре. С другой стороны, в соляной кислоте, полученной по традиционной технологии в реакции водорода с хлором, содержится меньшее количество примесей. Такую кислоту используют при необходимости высокой чистоты.

Получение хлороводорода в промышленности путем реакции горения водорода в хлоре:

В лабораторных условиях применяют метод получения соляной кислоты, который был разработан еще алхимиками. Он основан на действии концентрированной серной кислоты на поваренную соль:

Нагрев до температуры более 550 °C и наличие избытка поваренной соли являются условиями для протекания химической реакции по уравнению:

Получение соляной кислоты с помощью гидролиза хлоридов магния, алюминия (нагревается гидратированная соль) можно записать с помощью уравнений реакций:

Перечисленные реакции не всегда протекают до конца и сопровождаются образованием основных хлоридов (оксихлоридов) переменного состава, к примеру:

Хлороводород отличается хорошей растворимостью в воде. Например, при 0 °C  1 объем воды способен поглотить 507 объемов HCl. В результате получают концентрированную 45 % кислоту. Следует отметить, что в условиях комнатной температуры характеристика растворимости HCl меньше, поэтому на практике обычно используют 36% соляную кислоту.

Соляную кислоту относят к веществам III класса опасности, согласно ГОСТ 12.1.007-76. Рекомендуемая ПДК в рабочей зоне составляет 5 мгм3. Высококонцентрированная соляная кислота является едким веществом. При контакте соляной кислоты с кожей возникают сильные химические ожоги. С целью нейтрализации ожогов место поражения промывают большим количеством воды, затем обрабатывают 5% раствором соды (она нейтрализует кислоту). Максимально опасно попадание данного вещества в глаза (в значительном количестве).

В процессе открывания резервуаров с концентрированной соляной кислотой можно наблюдать выделение паров хлороводорода, которые, притягивая влагу из воздуха, образуют туман. Газообразное вещество способно раздражать глаза и дыхательные пути человека. Во время реакции с сильными окислителями в виде хлорной извести, диоксида марганца, перманганата калия соляная кислота образует хлор в газообразном состоянии с высокой степенью токсичности. На территории Российской Федерации ограничен оборот соляной кислоты концентрации 15 % и выше.

Использование на производстве

Она имеет широкое применение в металлургической, пищевой и медицинской промышленности.

  • Металлургии. Применение при паянии, лужении и зачистке металлов.
  • Пищевая промышленность. Применение при производстве пищевых регуляторов кислотности, к примеру, Е507.
  • Гальванопластика. Используется при травлении.
  • Медицине. Находит свое применение при производстве искусственного желудочного сока.

Входит в состав синтетических красителей. Используется при производстве чистящих и моющих средств. Но в жидкостях, предназначенных для бытового использования, концентрация серной кислоты незначительна.

Первая помощь и методы лечения

При обнаружении признаков отравления требуется вызвать бригаду скорой помощи. В домашних условиях допускается проводить мероприятия, направленные на улучшение состояния пострадавшего. Первая помощь при отравлении соляной кислотой должна проводиться быстро, чтобы уменьшить риск возникновения негативных последствий.

Мероприятия:

  1. При попадании соляного соединения на кожные покровы места повреждения промывают большим количеством прохладной воды. Длительность обработки составляет не менее получаса.
  2. При интоксикации парами пострадавшему обеспечивают доступ свежего воздуха, открывают окна, расстегивают тесную одежду.
  3. Рекомендуется следить за состоянием пациента, при отсутствии признаков жизни проводятся реанимационные действия.
  4. Пострадавшему от паров разрешается дать выпить теплый чай, воду. Рекомендуется провести полоскание полости носа и рта прохладной водой.
  5. При передозировке, возникнувшей в результате употребления кислоты внутрь, на живот кладут пузырь со льдом, чтобы исключить либо уменьшить возможное кровотечение.
  6. Не допускается употребление каких-либо лекарственных средств. Разрешается дать пациенту стакан воды (можно минеральной щелочной). Употреблять жидкость требуется маленькими глотками.
  7. Не разрешено промывать желудок, пытаться вызвать рвотные позывы в домашних условиях. Подобная первая помощь способна привести к развитию ожогов горла, кровотечению.

Лечение проводится в медицинском учреждении под контролем специалистов.

Терапия:

  • Очищение желудка при помощи зонда,
  • Использование капельниц с лекарственными растворами,
  • Назначение препаратов, снимающих болезненные ощущения,
  • Применение медикаментов, направленных на восстановление работы органов и систем,
  • При необходимости ингаляции кислородом и искусственная вентиляция легких,
  • Проведение реанимационной терапии при отсутствии признаков жизни,
  • Подбор витаминов и специального питания.

Лечение проводится в реанимации, а затем в стационаре. Длительность зависит от состояния пациента и степени отравления.

Естественное явление

Многие хлорорганические соединения были выделены из природных источников, от бактерий до людей. Хлорированные органические соединения содержатся почти в каждом классе биомолекул и природных продуктах, включая алкалоиды , терпены , аминокислоты , флавоноиды , стероиды и жирные кислоты . диоксины, которые представляют особую опасность для здоровья человека и окружающей среды, производятся в условиях высоких температур при лесных пожарах, а диоксины были обнаружены в сохранившемся пепле от пожаров, возникших при молнии, которые предшествовали синтетическим диоксинам. Кроме того, из морских водорослей было выделено множество простых хлорированных углеводородов, включая дихлорметан , хлороформ и четыреххлористый углерод . Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов.

Природный хлорорганический эпибатидин , алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулировал исследования новых обезболивающих. Однако из-за неприемлемого терапевтического индекса он больше не является предметом исследований для потенциальных терапевтических применений. Лягушки получают эпибатидин с пищей, который затем попадает в их кожу. Вероятными источниками пищи являются жуки, муравьи, клещи и мухи.

История

Около 900 г. авторы арабских писаний, приписываемые Джабиру ибн Хайяну (латинское: Гебер) и персидскому врачу и алхимику Абу Бакр ар-Рази (ок. 865–925, латинское: Rhazes), экспериментировали с солевым аммиаком ( хлорид аммония ). , который при перегонке вместе с купоросом (гидратированными сульфатами различных металлов) давал хлористый водород. Однако, похоже, что в этих ранних экспериментах с хлоридными солями газообразные продукты были выброшены, а хлористый водород, возможно, производился много раз, прежде чем было обнаружено, что его можно использовать в химии. Одним из первых таких применений был синтез хлорида ртути (II) (коррозионный сублимат), получение которого при нагревании ртути либо с квасцами и хлоридом аммония, либо с купоросом и хлоридом натрия было впервые описано в De aluminibus et salibus (» на квасцов и соли», в eleventh- или двенадцатого века арабский текст ложно приписываемой Абу Бакр аль-Рази и переведен на латинский язык во второй половине двенадцатого века на Жерара Кремона , 1144-1187). Другим важным событием было открытие псевдо-Гебера (в Де inventione Veritatis , «О Discovery Правды», после того, как с. 1300) , что при добавлении хлорида аммония в азотной кислоте , сильный растворитель , способный к растворению золота (т.е., аква regia ) могли быть произведены. После открытия в конце шестнадцатого века процесса, с помощью которого можно получить несмешанную соляную кислоту , было обнаружено, что эта новая кислота (тогда известная как спирт соли или acidum salis ) выделяет парообразный хлористый водород, который назывался морским кислотным воздухом . В 17 веке Иоганн Рудольф Глаубер использовал соль ( хлорид натрия ) и серную кислоту для приготовления сульфата натрия , выделяя газообразный хлористый водород (см. Производство выше). В 1772 году Карл Вильгельм Шееле также сообщил об этой реакции, и иногда ему приписывают ее открытие. Джозеф Пристли получил хлористый водород в 1772 году, а в 1810 году Хэмфри Дэви установил, что он состоит из водорода и хлора .

Во время промышленной революции спрос на щелочные вещества, такие как кальцинированная сода, увеличился, и Николя Леблан разработал новый промышленный процесс производства кальцинированной соды. В процессе Леблана соль превращали в кальцинированную соду с использованием серной кислоты, известняка и угля, получая хлористый водород в качестве побочного продукта. Первоначально этот газ выпускался в воздух, но Закон о щелочах 1863 года запрещал такой выпуск, поэтому производители кальцинированной соды абсорбировали отработанный газ HCl в воде, производя соляную кислоту в промышленных масштабах. Позже был разработан процесс Харгривза , который похож на процесс Леблана, за исключением того , что вместо серной кислоты в реакции, которая в целом является экзотермической, используются диоксид серы , вода и воздух. В начале 20-го века процесс Леблана был фактически заменен процессом Сольве , который не производил HCl. Однако производство хлористого водорода продолжалось как стадия производства соляной кислоты.

Историческое использование хлористого водорода в 20-м веке включает гидрохлорирование алкинов для получения хлорированных мономеров хлоропрена и винилхлорида , которые впоследствии полимеризуются для получения полихлоропрена ( неопрена ) и поливинилхлорида (ПВХ) соответственно. При производстве винилхлорида ацетилен (C 2 H 2 ) гидрохлорируется путем добавления HCl через тройную связь молекулы C 2 H 2 , превращая тройную связь в двойную связь с образованием винилхлорида.

«Ацетиленовый процесс», использовавшийся до 1960-х годов для производства хлоропрена , начинается с соединения двух молекул ацетилена , а затем добавляется HCl к соединенному промежуточному соединению через тройную связь, чтобы преобразовать его в хлоропрен, как показано здесь:

Этот «ацетиленовый процесс» был заменен процессом, который вместо этого добавляет Cl 2 к двойной связи этилена, а последующее удаление вместо этого дает HCl, а также хлоропрен.

Ссылки [ править ]

  1. ^ «хлористый водород (CHEBI: 17883)» . Химические объекты, представляющие биологический интерес (ChEBI) . Великобритания: Европейский институт биоинформатики.
  2. ^ Хейнс, Уильям М. (2010). Справочник по химии и физике (91 изд.). Бока-Ратон, Флорида, США: CRC Press . п. 4–67. ISBN 978-1-43982077-3.
  3. ^ Хлористый водород . Газовая энциклопедия. Air Liquide
  4. ^ Типпинг, Э. (2002) . Издательство Кембриджского университета, 2004.
  5. ^ Trummal, A .; Губа, L .; Кальюранд, I .; Коппель, ИА; Leito, I. «Кислотность сильных кислот в воде и диметилсульфоксиде» J. Phys. Chem. . 2016 , 120 , 3663-3669. DOI : 10.1021 / acs.jpca.6b02253
  6. ^ a b c Карманный справочник NIOSH по химической опасности. «# 0332» . Национальный институт охраны труда и здоровья (NIOSH).
  7. ^ a b «Хлороводород» . Немедленно опасные для жизни или здоровья концентрации (IDLH) . Национальный институт охраны труда и здоровья (NIOSH).
  8. ^ Ouellette, Роберт Дж .; Рон, Дж. Дэвид (2015). Основы органической химии . Elsevier Science. С. 6–. ISBN 978-0-12-802634-2.
  9. ^ Натта, Г. (1933). «Struttura e polimorfismo degli acidi alogenidrici». Gazzetta Chimica Italiana (на итальянском языке). 63 : 425–439.
  10. ^ Sándor, E .; Фэрроу, RFC (1967). «Кристаллическая структура твердого хлористого водорода и хлорида дейтерия». Природа . 213 (5072): 171–172. Bibcode1967Natur.213..171S . DOI10.1038 / 213171a0 . S2CID 4161132 .
  11. ^ Соляная кислота — Резюме соединений . Pubchem
  12. ^ a b Остин, Северин; Гловацки, Арндт (2000). Соляная кислота . DOI10.1002 / 14356007.a13_283 . ISBN 3527306730.
  13. ^ Пристли J (1772). «Наблюдения за различными видами воздуха » . Философские труды Лондонского королевского общества . 62 : 147–264 (234–244). DOI10,1098 / rstl.1772.0021 . S2CID 186210131 .
  14. ^ Дэви Х (1808). «Электрохимические исследования разложения земель; наблюдения за металлами, полученными из щелочноземельных металлов, и амальгамой, полученной из аммиака» . Философские труды Лондонского королевского общества . 98 : 333–370. Bibcode1808RSPT … 98..333D . DOI10.1098 / rstl.1808.0023 .п. 343: Когда калий нагревали в солянокислом газе , настолько сухом, насколько его можно было получить обычными химическими средствами, происходило сильное химическое воздействие с воспламенением; и когда калий был в достаточном количестве, солянокислый газ полностью исчез, и от одной трети до одной четвертой его объема водорода выделилось, и образовался хлорид калия . (Реакция была: 2HCl + 2K → 2KCl + H 2 )
  15. ^ Francisco J. Arnsliz (1995). «Удобный способ получения хлористого водорода в лаборатории первокурсника» . J. Chem. Educ. 72 (12): 1139. Bibcode1995JChEd..72.1139A . DOI10.1021 / ed072p1139 .
  16. ^ Краус, Пауль (1942–1943). Джабир ибн Хайян: Вклад в историю научных идей в исламе. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque . Каир: Французский институт археологии Востока . ISBN 9783487091150. OCLC  468740510 .т. II, стр. 41–42; Multhauf, Роберт П. (1966). Истоки химии . Лондон: Олдборн. С. 141-142.
  17. ^ Multhauf 1966 , стр. 142, примечание 79.
  18. ^ Multhauf 1966 , стр. 160-163.
  19. Карпенко, Владимир; Норрис, Джон А. (2002). «Купорос в истории химии» . Chemické listy . 96 (12): 997–1005.п. 1002.
  20. ^ Multhauf 1966 , стр. 208, примечание 29; ср. п. 142, примечание 79.
  21. ^ Хартли, Гарольд (1960). «Лекция Уилкинса. Сэр Хэмфри Дэви, Британская Республика, PRS 1778–1829». Труды Королевского общества А . 255 (1281): 153–180. Bibcode1960RSPSA.255..153H . DOI10,1098 / rspa.1960.0060 . S2CID 176370921 .
  22. ^ CDC — Карманный справочник NIOSH по химической опасности
  23. ^ «Хлористый водород» . CDC — Тема безопасности и гигиены труда NIOSH . 5 марта 2012 . Дата обращения 15 июля 2016 .
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector