Как работает диод и какие виды существуют

Конструкция диода

Одна из возможных конструкций диода показана ниже:

Рассмотрим одну из возможных конструкций прибора. Кристалл полупроводника 1 (например, с электронной проводимостью) размещен на металлической основе 3. На верхней части кристалла размещена примесь 2 (например индий), который обеспечивает наличие дырочной проводимости. Кристалл закрыт корпусом 4 во избежание различных механических повреждений p-n перехода.

С индиевой наплавки сделан изолированный вывод через стеклянный изолятор 5 – это анод прибора. Выводом же катода будет металлический корпус 3, которая также обеспечивает отвод тепла при работе устройства, чем защищает его от теплового пробоя и перегрева.

В свою очередь полупроводниковые элементы делят на:

  • Малая мощность – ток до 0,3 А;
  • Средняя – от 0,3 до 10 А;
  • Мощные – от 10 А;

Какой ток светодиода

По принципу действия светодиоды очень похожи на обычные выпрямительные диоды. Только конструктивное исполнение другое. И первое существенное отличие — это полупроводниковый материал. В случае выпрямительных диодов это чаще кремний. Светодиоды же изготавливаются из разных полупроводников, в зависимости от цвета которым они светятся. Материал определяет прямое напряжение, то есть напряжение, которое прикладывается к светодиоду при прохождении прямого тока через него.

Прямое напряжение — напряжение, равное или превышающее то, при котором ток (прямой ток) начинает течь через диод, и он начинает светиться.

Прямое напряжение и прямой ток

Каждый диод имеет разное прямое напряжение, что важно при выборе ограничительного резистора. Прямое напряжение зависит от таких факторов, как:

Прямое напряжение зависит от таких факторов, как:

  1. температура окружающей среды,
  2. величина протекающего тока (чем она выше, тем большее напряжение прикладывается к диоду),
  3. используемого производителем полупроводникового материала.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Как проверить светодиодную ленту на работоспособность

Как проверить сколько ампер выдает генератор мультиметром

На нашем сайте есть целая статья о том, как проверить светодиодную ленту, тут рассмотрим экспресс-методы проверки.

Сразу скажу, что засветить ее целиком мультиметром не удастся, в некоторых ситуациях возможно лишь лёгкое свечение в режиме Hfe. Во-первых можно проверять каждый диод по отдельности, в режиме проверки диодов.

Во-вторых иногда происходит перегорание не диодов, а токоведущих частей. Для проверки этого нужно перевести тестер в режим прозвонки и прикоснуться к каждому выводу питания на разных концах проверяемого участка. Так вы определите целую часть ленты и поврежденную.

Красной и синей линией выделены полосы, которые должны звонится от самого начала до конца светодиодной ленты.

Как проверить светодиодную ленту батарейкой? Питание ленты – 12 Вольт. Можно использовать автомобильный аккумулятор, однако он большой и не всегда есть под рукой. Поэтому на помощь придет батарейка на 12В. Используется в дверных радиозвонках и пультах управления. Ее можно использовать как источник питания при прозвонке проблемных участков LED ленты.

Включение светодиода через блок питания без резистора

Драйвер – импульсный блок питания, стабилизирующий ток. У него нет выходного напряжения, есть выходная мощность и выходной электроток. Если к схеме подключить исправный драйвер, выдается исключительно тот ток, на который прибор рассчитан. Но это не совсем блок питания, дополненный резистором. В драйвере его заменяет схема, способная подстраиваться под скачки значений вольтажа. Количество светодиодов, которые возможно подключить, ограничивается мощностью драйвера. Резистор в схеме не нужен.

Важно! Лучший вариант для того, чтобы без резистора подключить светодиоды – драйвер. Он не позволяет лед-лампам взять больше ампер, чем им нужно для свечения

К импульсным блокам питания относятся батарейки мобильных телефонов и аккумуляторы автомобилей, блоки компьютеров, нетбуков, ноутбуков, зарядчики с USB. Если устройство низковольтное, к нему можно подключить светодиод своими руками, сэкономив на покупке драйвера. Если вольт много, нужно подключить регулируемый стабилизатор.

Светодиод (или 2-3) можно подключить даже к обычной батарейке на 1,5, 3 или 5 В.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Достоинства и недостатки светодиодов

Плюсы

  • Высокая механическая и вибрационная стойкость.
  • Небольшой разогрев.
  • Маленькие габаритные размеры, легкий
  • Долговечность.
  • Низкое энергопотребление и мощность.
  • Возможность регулирования интенсивности свечения.
  • Высокие декоративные качества: разнообразие цветов и оттенков свечения.
  • Безынерционность: включаются сразу на полную мощность.
  • Возможность работы при низких температурах.
  • Низкая цена индикаторных светодиодов.
  • Безопасность: низкие рабочие значения напряжения и тока.

Минусы

  • Высокая цена SMD.
  • Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
  • Повышенные требования к источнику питания.
  • Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.

Области применения диодов

Несмотря на простое устройство, полупроводниковые диоды широко используются в электронике:

  1. Для выпрямления переменного напряжения. Классика жанра – используется свойство p-n перехода проводить ток в одном направлении.
  2. Диодные детекторы. Здесь используется нелинейность ВАХ, позволяющая выделять из сигнала гармоники, нужные из которых могут быть выделены фильтрами.
  3. Два диода, включенные встречно-параллельно, служат ограничителем мощных сигналов, которые могут перегрузить последующие входные каскады чувствительных радиоприёмных устройств.
  4. Стабилитроны могут включаться в качестве искрозащитных элементов, не позволяющих высоковольтным импульсам попасть в цепи датчиков, установленных в опасных зонах.
  5. Диоды могут служить переключающими устройствами в высокочастотных схемах. Они открываются постоянным напряжением и пропускают (или не пропускают) ВЧ сигнал.
  6. Параметрические диоды служат усилителями слабых сигналов в диапазоне СВЧ за счет наличия в прямой ветви характеристики участка с отрицательным сопротивлением.
  7. На диодах собирают смесители, работающие в передающей или приёмной аппаратуре. Они смешивают сигнал гетеродина с высокочастотным (или низкочастотным) сигналом для последующей обработки. Здесь также используется нелинейность ВАХ.
  8. Нелинейная характеристика позволяет применять диоды на СВЧ в качестве умножителей частоты. При прохождении сигнала через умножительный диод, выделятся высшие гармоники. Дальше их можно выделить методом фильтрации.
  9. Диоды применяют в качестве элементов настройки резонансных цепей. При этом используется наличие управляемой емкости у p-n перехода.
  10. Некоторые виды диодов применяют в качестве генераторов в диапазоне СВЧ. В основном это туннельные диоды и приборы с эффектом Ганна.

Это только краткое описание возможностей полупроводниковых приборов с двумя выводами. При глубоком изучении свойств и характеристик с помощью диодов можно решать многие задачи, поставленные перед разработчиками электронной аппаратуры.

Watch this video on YouTube

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Что такое светодиод, его принцип работы, виды и основные характеристики

Что такое варистор, основные технические параметры, для чего используется

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод

Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Виды диодов

Все диодные элементы можно разделить на 2 большие группы: неполупроводниковые и полупроводниковые. Первая группа состоит из 2-х видов: вакуумных (кенотронов) и наполненных газом (стабилитронов с тлеющим или коронным разрядом, игнитронов и газотронов).

Вакуумные диоды – лампы с двумя
электродами, один из них выполнен в виде нити накаливания. При открытии
электроны движутся от плюса к минусу. При изменении направления движения тока
прибор почти полностью закрывается, движение электронов прекращается.

Из газонаполненных диодных элементов на
данный момент используются лишь газотроны с дуговым разрядом (стабилитроны),
наполненные инертным газом и паром ртути и оснащенные оксидными термокатодами. Основная
особенность – способность выдать высокое напряжение на выходе и работать с
токами в несколько десятков ампер.

Полупроводниковые диоды – это емкости
небольшого размера, из которых удален воздух.

Внутри размещаются 2 электрода:

  • плюсовой
    (с электропроводностью p);
  • минусовой
    (с электропроводностью n).

Мультиметр

Неисправность диодов мультиметром найти проще и легче определить причину поломки вашего прибора.

Также он поможет замерить:

  • силу тока;
  • перепады в напряжении;
  • ёмкость конденсаторов;
  • найти обрыв цепи и так далее.

Современные мультиметры в состоянии работать с различными видами токов:

  • переменный;
  • постоянный.

Самые популярные на современном рынке — цифровые устройства.

Но еще встречаются в продаже и приборы аналогового типа.

И те и другие часто применяются в домашних условиях.

Но цифровые точнее (с погрешностью измерений в 0.5 %) и ими проще выполняется прозвонка.

Аналоговые мультиметры обладают более высокой надежностью и низкой стоимостью. Но менее точны — погрешность 1.5–2 %.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Преимущества и недостатки диода Шоттки

Одним из главных преимуществ использования диода Шоттки вместо обычного диода является низкое сопротивление его перехода металл-полупроводник, приводящее к тому, что напряжение падает при его прямом включении. Таким образом диод Шоттки потребляет меньшее напряжение, чем обычный диод. На его p-n-переходе падает лишь 0,3-0,4 В. На графике ниже вы можете видеть прямое падение напряжение, составляющее приблизительно 0,3 В. Ток через диод Шоттки значительно возрастает при увеличении напряжения сверх указанного. Через обычный диод ток не растет до напряжения приблизительно 0,6 В.

На рисунках ниже показаны две электрические цепи в качестве иллюстрации преимуществ низкого падения напряжения при прямом включении. В цепи слева обычный диод, а справа – диод Шоттки. У обеих цепей источник питания дает напряжение 2 В постоянного тока.

Обычный диод потребляет 0,7 В, отдавая нагрузке лишь 1,3 В. Благодаря низкому падению напряжения при прямом включении, диод Шоттки потребляет только 0,3 В, отдавая нагрузке 1,7 В. Если нагрузке необходимы 1,5 В, то для такой задачи подойдет только диод Шоттки.

Другие преимущества использования диода Шоттки вместо обычного диода:

  • Малое время обратного восстановления. Диод Шоттки накапливает небольшой заряд, что делает его идеальным для использования в схемах, требующих быстрого переключения — они широко используются при конструировании высокочастотных печатных плат;

  • Пониженный уровень помех. Диод Шоттки добавляет в схему меньшее количество нежелательного шума по сравнению с типичным диодом с p-n-переходом;

  • Более высокие характеристики. Диод Шоттки потребляет меньше энергии, поэтому подходит по техническим требованиям для использования в низковольтных устройствах.

Также следует помнить о нескольких недостатках диодов Шоттки. Диод Шоттки, на который подано обратное напряжение смещения, будет пропускать больший обратный ток, чем обычный диод. Это приводит к тому, что в цепи с обратным включением диода Шоттки ток утечки больше.

Максимальное обратное напряжение диода Шоттки также меньше, чем у обычных диодов, и обычно составляет не более 50 В. При превышении этого напряжения происходит пробой диода Шоттки, в результате чего он начинает пропускать большой ток в обратном направлении. До этой величины обратного напряжения существует лишь небольшой ток утечки через диод Шоттки, впрочем, как и у других диодов.

Проверка диодов мультиметром

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

Как проверить 1N4007?

Если говорить про проверку диодов, то особой проблемы для знающего человека это не будет, так как проверка происходит, как и в обычных диодах общего назначения. Для того, чтобы это сделать следует обзавестись (если у вас нет) специальными приборами: мультиметр или омметр.

Пошаговый алгоритм для тестирования диодов 1N4007

  • Первое что следует сделать — включить прибор и перевести его на специальный режим «Прозвонка» именно так как указано на рисунке ниже. Если вы используете другую модель мультиметра, то тогда обратитесь к инструкции по эксплуатации вашего измерительного прибора.
  • Берем щупы, и подключаем их к детали, которую вы планируете измерить. Красный следует присоединить к аноду, а черный к катоду. Именно такая полярность используется диодом, через который пройдет ток для того, чтобы вы смогли увидеть всю информацию, которая отобразиться на дисплее прибора. При наличии информации, где указано слишком большое сопротивление вы можете быть уверены в том, что произошёл внутренний обрыв.
  • Теперь вам следует поменять полярность, и оцениваем значение, показанное на дисплее прибора. После смены полярности диод не способен пропустить через себя напряжение, тем самым оно должно быть бесконечно большим. Если показания совершенно другие, то это говорит только об одном — пробой в переходе.

Именно этого будет вполне достаточно, чтобы вы смогли удостовериться в работоспособности полупроводников данного диода такой серии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector