Фототранзистор: схема, принцип работы и характеристики

5.1.6 Лавинный фотодиод

Предельная чувствительность p-i-n-фотодиода определяется хаотическими флуктуациями напряжения и тока на выходе, которые имеются как в присутствии оптического сигнала, так и без него. В случае p-i-n-диода – это тепловой и дробовой шум и шум темнового тока. Значительного увеличения пороговой чувствительности можно добиться в лавинных фотодиодах (ЛФД), работа которых основана на лавинном умножении носителей, так как в этом случае возникает внутреннее усиление. Конечно, при этом умножатся шумы диода, но суммарный эффект останется положительным, Такое умножение можно получить в лавинном процессе при высоких значениях электрического поля в лавинном фотодиоде. Структура продольного сечения ЛФД показан на рисунке 5.9.

Рисунок 5.9 – Структура продольного сечения ЛФД

Особенностью ЛФД является наличие защитного кольца в виде глубоко диффундированной n-области на краю n+-p-перехода. Защитное кольцо уменьшает ток утечки вблизи краёв перехода и предотвращает низковольтный пробой.
Структура материалов, образующих ЛФД, его топологическая схема и технология изготовления обеспечивают работоспособность устройства в таком режиме. Процесс образования носителей в ЛФД, включение его в цепь, возникновение фототока и распределение напряженности электрического поля показаны на рисунке 5.10.

Рисунок 5.10 – Процесс образования носителей тока в ЛФД, возникновение фототока и распределение электрического поля в структуре

Допустим, что смещение достигает величины, при которой в запирающем p-n+-слое электрическое поле превысит значение критической напряженности Eкр. Тогда образованные фотонами первичные электроны и дырки получают энергию, достаточную для того, чтобы посредством ударной ионизации образовывать новые пары носителей.
Это умножение носителей происходит в довольно узкой области δ вблизи пика электрического поля. Первичные электроны и дырки на длине свободного пробега в кристаллической решётке получают от электрического поля кинетическую энергию, равную ширине запрещённой зоны. Вторичные носители заряда, в свою очередь, способствуют ударной ионизации и образованию новых пар. Таким образом, первоначально слабый фототок возрастает лавинообразно. Рассмотренный ЛФД работает при напряжениях смещения U больше критического напряжения Uкр, соответствующего критической напряжённости Eкр:

U > Uкр

В отличие от p-i-n — ФД у ЛФД поглощение фотона приводит к появлению не одной электронно-дырочной пары, а М пар. Величина М называется коэффициентом лавинного умножения. Поэтому увеличение тока можно охарактеризовать с помощью этого коэффициента.
Для обычного р-n-перехода коэффициент лавинного умножения, равный кратности увеличения фототока, определяется по формуле:

где U – внешнее смещение;Uкр – критическое напряжение перехода;γ = 1,5 – 4 для кремния и γ = 2,5 – 9 для германия.
Если бы процесс лавинного умножения был определенным, то каждая первичная электронно-дырочная пара создавала М вторичных пар. На самом деле в реальном ЛФД умножение не определённое, то есть каждая первичная пара порождает случайное число вторичных пар, среднее число которых может быть равно , однако мгновенное изменения М могут быть большими. Тогда лавинный ток будет:

Величина имеет порядок 10–100. Конструктивно ЛФД существенно сложней p-i-n — ФД. Кроме того, для создания условий лавинообразного размножения носителей требуется существенно увеличить размеры обеднённой области. При больших U сильные токи приводят к разогреву полупроводника, что увеличивает темновой ток и уменьшает фототок (электрический пробой переходит в тепловой). Проигрывает ЛФД и по шумовым характеристикам. Это объясняется тем, что процесс образования лавины носит случайный характер и является дополнительным источником шума. Из-за сильной зависимости M(U) использование ЛФД затрудняется необходимостью применения высокостабильного напряжения. Однако ЛФД значительно превосходит p-i-n — ФД по чувствительности.

Фотоэлектрический режим в фотодиодных схемах

Следующая схема представляет собой пример реализации фотоэлектрической системы.

Рисунок 1 – Пример включения фотодиода в фотоэлектрическом режиме

Эта схема на операционном усилителе называется трансимпедансным усилителем (TIA, transimpedance amplifier). Она разработана специально для преобразования сигнала тока в сигнал напряжения, причем отношение тока к напряжению определяется значением резистора обратной связи Rос. Неинвертирующий вход операционного усилителя соединен с землей, и если мы применим предположение о виртуальном коротком замыкании, мы узнаем, что на инвертирующем входе всегда будет примерно 0 В. Таким образом, катод и анод фотодиода поддерживаются при напряжении 0 В.

Я не уверен, что «фотоэлектрическая» – это совсем точное название этой реализации на базе операционного усилителя. Не думаю, что фотодиод работает как солнечный элемент, генерирующий напряжение за счет фотоэлектрического эффекта. Но «фотоэлектрический» – это общепринятая терминология, нравится мне это или нет. Термин «режим нулевого смещения», я думаю, подходит лучше, потому что мы можем использовать этот же трансимпедансный усилитель с фотодиодом в фотоэлектрическом или фотопроводящем режиме, и, таким образом, отсутствие напряжения обратного смещения является наиболее заметным отличительным фактором.

Когда использовать фотоэлектрический режим

Преимущество фотоэлектрического режима – снижение темнового тока. В обычном диоде прикладывание напряжения обратного смещения увеличивает обратный ток, потому что обратное смещение уменьшает диффузионный ток, но не уменьшает дрейфовый ток, а также из-за утечки.

То же самое происходит и с фотодиодом, но обратный ток называется темновым током. Более высокое напряжение обратного смещения приводит к увеличению темнового тока, поэтому, используя операционный усилитель для удержания фотодиода примерно при нулевом смещении, мы практически исключаем темновой ток. Таким образом, фотоэлектрический режим хорош для приложений, которым необходимо максимизировать эффективность при низкой освещенности.

Характеристики фотодиодов для выбора

Параметры фотодиода можно найти в их спецификации в сети. Рассмотрим, по каким позициям подбираются детали

Следует сказать, что для несложных целей (реле освещенности, ИК-приемник) указанные ниже характеристики можно не брать во внимание, достаточно купить рекомендованное изделие для конкретной сборки

Вольтамперные качества, определяющие изменения значений светового потока согласно меняющемуся напряжению при стабильном потоке излучения и темновом токе. Ниже стандартная диаграмма ВАХ фотодиода.

Спектральные качества (чувствительность). Отображают как протяженность волны света, угол падения лучей меняют характеристики фототока на разных полупроводниках.

Чувствительность может измеряться при разных параметрах света:

Световая или энергетическая характеристика. Объяснена на рисунке ниже:

Временная постоянная. Период, за который происходит реагирование тока на увеличение/уменьшение затемнения, освещенности на 63 % от установленной величины.

Нижний предел чувствительности. Минимум интенсивности света для возникновения реакции фотодиода.

Темновое сопротивление. Характеризует состояние полупроводника при отсутствии света, это вольт-амперная характеристика при отсутствии излучения.

Инерционность:

Указанные выше основные характеристики используют для подбора фотодиодов к параметрам нагрузки:

Что из себя представляет фототранзистор?

Фототранзистор представляет из себя твердотельный полупроводник, который обладает внутренним усилением, и, как правило, применяется данный прибор для трансмиссии (передачи) аналогового и цифрового сигнала. Схема фототранзистора совпадает с основами обычного транзистора, именно поэтому его аналогом принято считать фотодиод.

Стоит отметить, что отличительной особенностью вышеназванного устройства является не только способность реагировать на различные виды излучений и освещений, но и повышенная чувствительность, позволяющая применять его в различных устройствах, связанных с зависимостью потока света. К таковым можно отнести следующие:

  • датчики дыма;
  • лазерные радары;
  • пульты с дистанционным управлением.

Типы диодов

Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.

Для производства диодов используют один из четырех исходных полупроводников:

  • германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
  • кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
  • арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
  • фосфид индия – в светодиодах и для работы на сверхвысоких частотах.

Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.

Есть два варианта конструкционного размещения катода и анода:

  1. Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
  2. Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.

В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.

Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделение – уже по техническим параметрам:

  • рабочая частота;
  • время восстановления;
  • прямой и обратный ток;
  • допустимые значения обратного и прямого напряжения;
  • температурный режим.

Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.

5.1.1 Принцип действия фотодиода

Существуют материалы, носители заряда в которых не проводят ток в отсутствие воздействия светового потока. Это происходит по ряду причин: либо носители заряда находятся в зоне, где они не могут принимать участие в проводимости (например, в заполненной валентной зоне), либо они блокированы потенциальным барьером, как в детекторе Шоттки, или захвачены связанными квантовыми состояниями. В основе работы ФД лежит эффект поглощения фотонов в полупроводниковом материале и рождение за счёт этого электронно-дырочных пар. Это происходит благодаря переходу электронов из валентной зоны на более высокий энергетический уровень в зону проводимости
Если на переход не подано внешнее напряжение и цепь разомкнута (рисунок 5.1), то освещение приводит к накопление фотоэлектронов в n-области и дырок в р-области. В результате образуется разность потенциалов Uф , т.е. появляется фото-ЭДС. Если внешняя цепь замкнута, то возникает фототок. В таких условиях диод работает как фотоэлемент.

Рисунок 5.1 – Процесс перехода электрона в зону проводимости

Для регистрации потока фотонов необходимы условия, при которых электронно-дырочные пары не рекомбинируют за счёт перехода электрона обратно в валентную зону. Эти условия в ФД создаются внутренним электрическим полем перехода. Известно, что в области перехода концентрация электронов в зоне проводимости и дырок в валентной зоне меньше, чем в прилегающих полупроводниках n- и p-типа, соответственно. Поэтому область в окрестности перехода называется обеднённым слоем. Именно здесь вероятность поглощения фотона велика, а среднее время, за которое созданная электронно-дырочная пара рекомбинирует, может быть сделано большим.
Процессу разделения подвергаются носители заряда, генерируемые в обеднённой области перехода и прилегающей к ней областях размером, примерно равным диффузионной длине неосновных носителей. Только с расстояния, меньшего диффузионной длины, неосновной носитель в процессе движения успевает пересечь границу перехода за время жизни.
Неосновные носители, генерируемые в р- и n-областях на большом расстоянии от границы перехода, вследствие рекомбинации не попадают в обеднённую область, где сосредоточено электрическое поле перехода.
На рисунке 5.2 показана зонная диаграмма энергетических уровней электрона при обратном смещении.

Рисунок 5.2 – Зонная диаграмма энергетических уровней электронов для р-n-перехода при обратном смещении U

Обеднённый слой не имеет свободных носителей, поэтому его сопротивление очень велико, и практически всё падение напряжения приходится на область контакта. В результате электрические силы очень велики в области контакта и пренебрежимо малы в других областях.
За счёт напряжения смещения U возникает дополнительное ускоряющее электрическое поле, которое действует на электроны в зоне проводимости и дырки в валентной зоне и перемещает носители, появившиеся при поглощении фотона, улучшая тем самым характеристики фотодиода. В результате электроны дрейфуют в n-область, а дырки – в p-область, где вероятность их рекомбинации мала. Величина приложенного напряжения напрямую связана с напряжённостью электрического поля, а, следовательно, и с кулоновской силой, действующей на заряженные частицы.
В конечном итоге напряжение смещения U определяет скорость их движения через обеднённую область. Эта скорость должна быть выбрана так, чтобы время пролёта частиц до внешних контактов ФД было бы существенно меньше, чем среднее время рекомбинации. Тогда практически все электронно-дырочные пары, появившиеся вследствие поглощения фотонов, участвуют в формировании фототока. Те носители, которые достигают обеднённой области быстро проходят её под действием сильного электрического поля, возбуждая при этом ток во внешней цепи. Данный ток возникает со сдвигом во времени по сравнению с поглощением фотона. Сдвиг во времени определяется первоначальным медленным диффузионным движением носителей по направлению к обеднённой области.
В идеальном фотодиоде весь падающий свет поглощается в обеднённом слое, и все рождающиеся носители собираются на контактах. Тогда фототок под действием оптической мощности P определяется из выражения

где Р – оптическая мощность;Eф– фото-ЭДС;e – заряд электрона.
На практике, конечно, часть падающего света отражается.

Принцип действия

Фотодиод — это ПИН-код или p – n переход. Когда фотон достаточной энергии попадает в диод, он создает электрон–дыра пара. Этот механизм также известен как внутренний фотоэлектрический эффект. Если поглощение происходит в переходе область истощенияили на расстоянии одной диффузионной длины от нее, эти носители уносятся из перехода встроенным электрическим полем обедненной области. Таким образом, дыры движутся к анод, а электроны к катод, а фототок производится. Полный ток через фотодиод представляет собой сумму темнового тока (тока, который генерируется в отсутствие света) и фототока, поэтому темновой ток необходимо минимизировать, чтобы максимизировать чувствительность устройства.

В первом порядке для данного спектрального распределения фототок линейно пропорционален величине сияние.

Фотоэлектрический режим


ВАХ фотодиода. Линейный грузовые линии представляют собой реакцию внешней цепи: I = (приложенное напряжение смещения — напряжение диода) / общее сопротивление. Точки пересечения с кривыми представляют фактические ток и напряжение для данного смещения, сопротивления и освещенности.

В фотоэлектрическом режиме (ноль предвзятость) фототок выходит из анода через короткое замыкание на катод. Если цепь разомкнута или имеет сопротивление нагрузки, ограничивающее выход фототока из устройства, напряжение нарастает в направлении, которое смещает диод в прямом направлении, то есть положительный анод относительно катода. Если цепь закорочена или сопротивление низкое, прямой ток потребляет весь или часть фототока. Этот режим использует фотоэлектрический эффект, что является основой солнечные батареи — традиционный фотоэлемент — это просто фотодиод большой площади. Для оптимальной выходной мощности фотоэлектрический элемент будет работать при напряжении, которое вызывает лишь небольшой прямой ток по сравнению с фототоком.

Фотопроводящий режим

В фотопроводящем режиме диод , то есть с катодом, положительным по отношению к аноду. Это уменьшает время отклика, поскольку дополнительное обратное смещение увеличивает ширину обедненного слоя, что уменьшает емкость и увеличивает область с помощью электрического поля, которое заставляет электроны быстро собираться. Обратное смещение также создает темное течение без особого изменения фототока.

Хотя этот режим более быстрый, в режиме фотопроводимости может быть больше электронного шума из-за темнового тока или лавинных эффектов. Ток утечки хорошего PIN-диода настолько мал (Шум Джонсона – Найквиста сопротивления нагрузки в типовой цепи часто преобладает.

Фоторезисторы и фотодиоды. Устройство, принцип действия

Фоторезисторами называют полупроводниковые приборы, принцип действия которых основан на изменение сопротивления полупроводника под действием светового излучения.

На рис. 7.31 показано устройство фоторезистора, состоящего из диэлектрической подложки 1, выполненной из стекла или керамики, на которую наносится слой полупроводника (сернистый свинец) 2, покрытый защитным лаком. По краям выведены два металлических электрода 3. Фоторезистор крепится в пластмассовом корпусе 4, снабжённым слюдяным или стеклянным окошком 5, через которое проникает световой поток Ф, и выводятся электроды 3.

Рис. 7.31. Устройство фоторезистора

На рис. 7.32 изображена схема подключения фоторезистора ФR к источнику питания E через нагрузочное сопротивление Rн.

Рис. 7.32. Схема подключения фоторезистора к источнику питания

Вольтамперные характеристики фоторезистора приведены на рис.7.33, из которых видно, что при неосвещённом фоторезисторе (), по цепи проходит темновой ток . При этом фоторезистор имеет большое сопротивление, поэтому на нём падает значительное напряжение . Если на фоторезистор направить световой поток, то, в зависимости от освещения, его сопротивление начнёт уменьшаться. Проходящий по цепи фототок , будет равен разности светового и темнового токов . При светововом потоке , световой ток увеличивается до значения . Падение напряжения фоторезистора уменьшиться до значения . При полном освещении , световой ток достигнет значения , напряжение фоторезистора упадёт до значения . Недостатком такого полупроводникового прибора является его инерционность.

Рис. 7.33. Вольтамперные характеристики фоторезистора

К фотодиодам относятся полупроводниковые приборы, у которых область

р-n-перехода подвергается воздействию световой энергии. Рисунок 7.34 поясняет принцип работы светодиода, который имеет два электрода анод А и катод К.

Рис. 7.34. Схема фотогенерации свободных зарядов фотодиода под действием фотонов света

При отсутствии светового потока Ф р-n-переход П заперт. При освещении запирающего р-n-перехода происходит фотогенерация, фотоны света образуют пары электрон-дырка свободных зарядов, при этом свободные электроны переходят в слой n, свободные дырки — в слой p.

Фотодиоды работают в двух режимах: генераторном и преобразовательном. На рис.7.35 изображён фотодиод, работающий в генераторном режиме.

Рис. 7.35. Схема фотодиода, работающего в генераторном режиме

Под действием светового излучения генерируется фотоЭДС (около одного вольта) с полярностью анода (+), катода (-). В режиме короткого замыкания во нешней цепи и между слоями n и р фотодиода проходит максимальный обратный ток при нагрузке . Если включена нагрузка, то фототок уменьшается. В режиме холостого хода при , фотоЭДС , так как фототок будет равен нулю.

Режим работы фотодиода называется генераторным. Фотоэлементы, не требующие источника питания, находят широкое применение в электротехнике и автоматике. В генераторном режиме работают солнечные кремниевые батареи, в которых происходит преобразование солнечной энергии в электрическую энергию.

В режиме преобразователяв цепь фотодиода последовательно с нагрузкой включается источник ЭДС в запирающем (обратном) направлении. На рис.7.36 изображён преобразовательный режим работы фотодиода.

Рис. 7.36. Схема фотодиода, работающего в преобразовательном режиме

Если фотодиод неосвещен, то через него проходит незначительный темновой ток . При освещении запирающего перехода, фотодиод открывается и через него проходит световой ток , величина которого зависит от значения светового потока.

На рис. 7.37 приведены вольтамперные характеристики, поясняющие принцип работы фотодиода в генераторном и преобразовательном режимах.

Рис. 7.37. Вольтамперные характеристики, поясняющие принцип работы фотодиода в генераторном и преобразовательном режимах

Варианты, типы фотодетекторов

Инфракрасный фотодиод выполнен в черном корпусе, реагирует только на ИК-излучение. Темный цвет линзы — это подобие фильтрующей тонировки, чтобы не срабатывать на иные спектры.

У фотодетекторов есть диапазон частот, тут она больше на порядки, до 10 МГц (намного выше, чем у фоторезисторов), что обеспечивает отличное быстродействие. У вариантов p-i-n и с барьером Шоттки эта цифра 100 МГц–1ГГц, у лавинных — 1–10 ГГц.

Типы фотодиодов по принципу работы, по вариантам комбинации, размещения слоев, материалов рассмотрим ниже.

Фотодиод p-i-n

Элементы типа p-i-n широко распространены для волоконно-оптических систем связи — они преобразуют свет в электросигналы, преобразовывающиеся затем в информацию (видео, звуковая и прочие)

Прослойки p и n изготовляют с применением легирования: в материал полупроводника добавляют усиливающие его примеси. Если в обозначении такой детали есть +, то это свидетельствует о повышенном содержании добавок.

Средний сегмент — часть «i» — это проводник «n», но слаболегированный. Если на него подается обратное напряжение, то там образуется обедненная локация (дырок/электронов становится меньше).

Сопротивление на i-сегменте растет, намного превышает таковое на р+ и n+. Итог указанного процесса: электрополе сосредотачивается в i-области, фотон, поглощаемый там, создает пару: электрон/дырка. Мощное поле на i-участке мгновенно распределяет их на электроды: дырку поглощает катод, электрон — анод. Так создается электроток.

Эффективность p-i-n фотодиодов чрезвычайно высокая, так как их частота может достигать 1010 Гц, что гарантирует передачу за 1 секунду терабайтов данных. У таких деталей i-участок намного шире, чем p+ и n+ для того, чтобы фотоны осваивались бы больше именно на этом сегменте.

Лавинные

В волоконно-оптических технологиях кроме p-i-n типов рассматриваемых деталей используются особые виды — лавинные фотодетекторы (ЛФД), их отличие — дополнительный p-участок.

Из-за укрепляющих добавок более высокое сопротивление у p-слоя, соответственно, наибольшее понижение напряжения на нем. Фотон, оказываясь в светосенситивном i-сегменте, вырывает оттуда электрон, устремляющийся к аноду, дырка идет к катоду.

Электрон на своем маршруте оказывается на локации большого напряжения p-слоя, тут он резко ускоряется, что позволяет выбивать с оболочек атомы p-участков иные такие же частицы. Затем новообразовавшиеся свободные electron делают то же — выбивают из валентных сегментов дополнительные их аналоги. Явление растет лавинообразно.

На изображении визуализировано резкий всплеск движущей электросилы на p-слое. Ток первичный, появившийся в i-слое, растет лавиной на p-участке. Повышение достигает несколько сотен раз, но если оно слишком большое, то создает шумы, увеличивающиеся быстрее импульса. Оптимальное значение коэффициента 30–100.

С барьером Шоттки

В данном типе элементов создается несколько пленок, то есть особая структура, позволяющая избегнуть инжекции неосновных носителей. Такие детали используют движение только основных транспортировщиков. Плюс в том, что нет медленных процессов, подпадающих под влияние явлений накопления, рассасывания второстепенных носителей на базе диода. Плюсы: инерционность, сроки перезарядки ничтожные, первая обусловлена только временем прохода носителей через области пространственного заряда.

Указанные выше способности позволяют применять оптодиоды при СВЧ модуляциях излучений.

Гетероструктурные

Собираются из 2 полупроводников с разным размером запрещенного сегмента, гетерогенным именуют участок между ними. Особым подбором материалов создают устройство, охватывающее (воспринимающее) полную протяженность волн. Минус такого изделия — затратность изготовления.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector