Переменный резистор для регулировки напряжения

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру

Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах

Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

  • КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
  • 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
  • КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
  • Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
  • KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.

Читать также: Сгорел зарядник от шурика чем зарядить

Универсальная таблица цветов

Существует универсальная таблица цветов, которая позволяет проводить быстрый расчет номиналов каждого резистора при необходимости.

При создании подобной таблицы выделяют следующие поля:

  1. Цвет кольца или нанесенной точки. При этом, указывается как название, так и приводится пример.
  2. В зависимости от того, каким по счету стоит цвет, есть возможность перевести цветовую кодировку в числовое значение. Это необходимо при создании схемы для условного обозначения номиналов.
  3. Множитель позволяет провести математическое вычисление того, какое сопротивление имеет рассматриваемый вариант исполнения.
  4. Также, практически для каждого цвета имеется поле, которое обозначает максимально отклонение от номинала.

Стоит помнить, что каждый цвет может обозначать цифру в маркировке, значение множителя или максимальное отклонение.

Примеры

Пример 1:

Использование подобной таблицы рассмотрим на следующем примере: коричневый, черный, красный, серебристый. Чтение колец проводим слева на право, получаемое значение всегда кодируется в Омах.

Согласно данным из таблицы, проводим следующую расшифровку:

  1. Коричневый цвет в первом положении обозначает как цифру, так и множитель. В этом случае, цифра будет равна «1», а множитель «10». Стоит отметить, что в первой позиции не могут использоваться следующие цвета: черный, золотистый или белый.
  2. Второй цвет означает номер второй цифры. Черный означает «0» и он не используется при расчетах. Имея подобные данные, можно сделать вывод, что резистор имеет буквенно-числовую маркировку 1К0.
  3. Третий цвет определяет множитель. В нашем случае он красный, множитель у этого цвета «100».
  4. Последний цвет означает максимальный допуск по отклонению, и серебристый цвет соответствует 10%.

Используя таблицу, можно сказать, что рассматриваемый резистор имеет маркировку 1К0 и значение сопротивления 1000 Ом (10*100) или 1 кОм, а также допуск 10%.

Пример 2:

Еще одним более сложным примером назовем расчет номинальных значений следующего резистора: красный, синий, фиолетовый, зеленый, коричневый, коричневый. Данная маркировка состоит из 6 колец.

При расшифровке отмечаем следующее:

1 кольцо, красное – число «2».
2 кольцо, синее – число «6».
3 кольцо, фиолетовое – число «7».
Все числа выбираем из таблицы. При их сочетании получаем число «267».
4 кольцо имеет зеленый цвет

В данном случае обращаем внимание не на числовой значение, а множитель. Зеленый цвет соответствует множителю 105. Проводим расчет: 267*105=2,67 МОм.
5 кольцо имеет коричневый цвет и ему соответствует значение максимального отклонения в обе стороны 1%.
6 линия коричневая, что соответствует температурному коэффициенту в значении 100 ppm/°C.

Из вышеприведенного примера можно сказать, что провести расшифровку маркировки не сложно, и количество колец практически не оказывает влияние на то, насколько сложными будут расчеты. В рассматриваемом случае, резистор имеет сопротивление 2,67 МОм с отклонением в обе стороны 1% при температурном коэффициенте 100 ppm/°C.

Процедуру можно упростить, воспользовавшись специальными калькуляторами. Однако, не многие проводят вычисление 6 колец, что стоит учитывать.

Номинальные ряды резисторов можно назвать результатом проведения стандартизации номинальных значений. Постоянные резисторы имеют 6 подобных рядов. Также, введен один ряд для переменных номиналов и специальный ряд Е3.

На примере приведенного номинала проведем расшифровку:

  1. Буква «Е» обозначает то, что проводится маркировка по ряду номинала. Эта бука всегда идет в обозначении.
  2. Цифры после буквы означает число номинальных значений сопротивления в каждом десятичном интервале.

Существуют специальные таблицы с отображение номинальных рядов.

Для выявления стандартных рядов, был принят ГОСТ 2825-67. При этом, можно выделить несколько наиболее популярных стандартных рядов:

  1. Ряд Е6 имеет отклонение в обе стороны 20%.
  2. Ряд Е 12 имеет допустимое отклонение 10%.
  3. Ряд Е24 обладает показателем максимально допустимого отклонения в обе стороны 5%.

Последующие ряды Е48 и Е96, Е192 обладают показателем отклонения 2%, 1%, 0,5% соответственно.

Переменные и подстроечные резисторы. Реостат

В одной из предыдущих статей мы обсудили основные аспекты, касающиеся работы с резисторами, так вот сегодня мы продолжим эту тему. Все, что мы обсуждали ранее, касалось, в первую очередь, постоянных резисторов, сопротивление которых представляет из себя не изменяющуюся величину

Но это не единственный существующий вид резисторов, поэтому в данной статье мы уделим внимание элементам, имеющим переменное сопротивление, в частности, переменным резисторам

Переменный резистор

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

Разница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

Обозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

Обозначения переменных проводников

Описание и принцип работы

Резисторы обеспечивают фиксированное значение сопротивления, которое блокирует или сопротивляется потоку электрического тока вокруг цепи, а также вызывает падение напряжения в соответствии с законом Ома. Резисторы могут быть изготовлены так, чтобы иметь либо фиксированное значение сопротивления в Омах, либо переменное значение сопротивления, отрегулированное некоторыми внешними средствами.

Потенциометр, который обычно называют как «котел», представляет собой три-терминал с механическим приводом поворотного аналоговое устройство, которое можно найти и использовать в самых разнообразных электрических и электронных схем. Это пассивные устройства, то есть им не требуется источник питания или дополнительная схема для выполнения их основной функции линейного или поворотного положения.

Переменные потенциометры доступны в различных механических вариациях, что позволяет легко регулировать управление напряжением, током или регулированием смещения и усиления схемы для получения нулевого состояния.

Название «потенциометр» представляет собой сочетание слов «разность потенциалов» и «измерение» , появившихся на заре развития электроники. Тогда считалось, что при регулировке больших резистивных катушек с проволочной обмоткой измеряется установленная величина разности потенциалов, что делает его типом прибора для измерения напряжения .

Сегодня потенциометры намного меньше и намного более точны, чем те, которые раньше были большими и громоздкими с переменным сопротивлением, и, как и в случае большинства электронных компонентов, существует множество различных типов и названий, начиная от переменного резистора, пресета, триммера, реостата и, конечно, переменного потенциометра.

Но какими бы ни были их названия, все эти устройства функционируют абсолютно одинаково, так как их значение выходного сопротивления может быть изменено движением механического контакта или контактной щетки, вызванным каким-либо внешним воздействием.

Переменные резисторы в любом формате, как правило, связаны с определенной формой управления, будь то регулировка громкости радиоприемника, скорости транспортного средства, частоты генератора или точная настройка калибровки цепи, однооборотный и многократный потенциометры, триммеры и реостаты могут найти широкое применение в бытовых электротоварах.

Термин « потенциометр» и « переменный резистор» часто используются для описания одного и того же компонента, но важно понимать, что соединения и работа этих двух устройств различны. Однако оба имеют одинаковые физические свойства в том смысле, что два конца внутренней резистивной дорожки выведены на контакты, в дополнение к третьему контакту, соединенному с подвижным контактом, называемым «ползунком» или «контактной щеткой»

Подключение потенциометра

Для начала приведем блок наиболее характерных схем. Надо сказать, что ПТ можно подключать не только как РС, но и как простой фиксированный резистор (варианты на 3 рис.):

Ниже наиболее распространенные схемы (обозначения по западному стандарту):

Надо сказать, что традиционная схема подключения частотника потенциометра всегда рекомендует «лишний» вывод подсоединять, обрыв на линии «подвижный контакт — подковка» не исключены, что может привести к неприятным последствиям.

Схемы как подключить ПТ чрезвычайно простые, фактически вариант один — параллельно на один из проводов питания.

Например, так выглядит регулятор на компьютерном кулере. В данном случае полярность значения не имеет. Берется любой проводок питания кулера, разрезается, один конец спаивается сразу с первым и вторым (средним) контактов, второй — с оставшимся. То есть на первых 2 контактах лежит какой-либо конец провода (они спаиваются с одной и той же этой жилой), третий контакт — другой конец, как бы отдельно стоящий.

Сложность некоторых схем: нужно знать, к какому проводу подсоединять, то есть какую линию питания регулировать, например, если делают подключение потенциометра внешнего для частотно-регулируемых электроприводов для настройки интенсивности вращения электродвигателей, при регулировке ПИД-регуляторов.

В таких случаях руководствуются схемами призводителей или авторов таких совершенствований, рекомендациями мастеров, вся информация есть в сети на спецфорумах и тематических сайтах. Ниже пример подключения к частотному преобразователю:

Подключение переменного резистора

Большое количество людей не знают, как подключить переменный резистор. Эти элементы зачастую имеют две схемы подключения. Сделать эту работу сможет человек, который хоть немного разбирается в электронике и имел дело с пайкой микросхем.

  • Первый вариант подключения заключается в том, что верхний вывод необходимо подсоединить к основному источнику питания. Нижний припаивается к общему проводу. Специалисты называют его «земля». Стоит отметить, что средние выводы соединяются исключительно с управляющими элементами схемы. Это может быть база или главный затвор транзистора. В таком случае эти конструкции будут играть роль потенциометра.
  • Существует и второй способ, который поможет узнать, как подключить переменный резистор. Верхние выводы необходимо подсоединять к основному источнику питания. Нижние концы конструкции припаиваются к проводу общего назначения, а средние соединяются с нижними или верхними выводами. Именно они способны подавать на управляющие элементы схемы необходимую мощность питания. Этот способ подключения заключается в том, что переменные резисторы будут играть немаловажную роль и регулировать поступающий ток.

Ремонт переменного резистора своими руками

Из-за износа проводящего слоя и ослабления нажима подвижного контакта переменное сопротивление начинает плохо работать, генерируя «шумы», или совсем прийти в негодность.

Способы ремонта сопротивления в разобранном виде:

  1. С помощью простого карандаша, грифель которого состоит из чистого твердого углерода – слегка отогнуть пружину подвижного контакта, несколько раз провести грифелем по проводящему слою для восстановления последнего. Это метод более эффективен для тонкопленочных сопротивлений.
  2. Грифель простого карандаша растереть в пыль, смешать с литолом (или аналогичной смазкой), полученной смесью смазать дорожку, по которой движется ползунок.

Сопротивление в неразборном корпусе починить сложнее, но можно – просверливаем в корпусе отверстие (диаметром около 1мм), заливаем шприцом немного чистого спирта, крутим ручку. После полного испарения спирта работоспособность регулировочного элемента восстанавливается.

Для нормальной работы электрической цепи важно грамотно проанализировать условия работы всех элементов – зная характеристики, назначение, схемы подключения и условия эксплуатации, можно обеспечить надежную и долгую работоспособность регулируемых сопротивлений в бытовых приборах и электронных устройствах

Что нужно учесть при выборе ЦП

При необходимости купить цифровой потенциометр следует знать, на какие его параметры обращать внимание. Среди них:

  • Уровень входного сигнала (напряжение).
  • Максимальный показатель мощности и тока.
  • Импеданс (показатель полного сопротивления).
  • Уровень разрешения.
  • Количество каналов.
  • Линейность сопротивления.
  • Положение при включении.
  • Наличие или отсутствие энергозависимой памяти.
  • Интерфейс резистора.
  • Размер устройства.

Отдавать предпочтение нужно тому ЦП, параметры которого больше всего подходят под конкретную задачу. Например, последний показатель крайне важен для приложений и схем, критически ограниченных по размеру. Хотя некоторые пользователи отмечают, что можно сделать подобный потенциометр своими руками, такая работа не стоит затраченного времени и сил. В продаже настолько большой выбор ЦП, да еще по доступной цене, что можно подобрать для любых целей и устройств.

Процесс пайки

Перед пайкой рекомендуем, как следует прогреть паяльник. Перед погружением в припой, следует в первую очередь окунуть жало в канифоль. В том случае если деталь достаточно старая, то ее необходимо предварительно пролудить с применением припоя, который очень легко расплавляется.

Если вы собираетесь применять для этой цели специальную паяльную пасту, то ее необходимо вылить на поверхность для выполнения пайки. При этом дорожки микросхем следует покрыть специальной пастой. Также рекомендуется нанести ее и на специальные выводы. Пасту нужно наносить очень тонким слоем.

Если пайка резисторов будет осуществляться непосредственно к плате, то учтите, что под ней имеются переходные отверстия и дорожки. Если требуется паять резисторы с большим количеством микроскопических ножек, то рекомендуем вместо паяльника использовать специальный фен, которым можно прогреть микросхему.

Чистка подстроечника обычным спиртом

Резистор в схемах может стать грязным, его ползунковая дорожка со временем покрывается слоем пыли. И чтобы вернуть электрическому сопротивлению прежнюю работоспособность его нужно просто почистить.

Делается чистка подстроечных резисторов достаточно просто и быстро. Лучше всего для этих целей использовать чистый спирт. Различные средства типа для снятия лака, самогон, очистители лучше не применять, так как в них могут содержаться примеси, отрицательно влияющие на чистоту резистора.

Итак, разбираем резистор (если на нем имеется защитный кожух), для этого обычно достаточно разогнуть небольшие металлические зажимчики на самом корпусе резистора после чего нужно снять эту крышку. Внутри резистора мы увидим дорожку, по которой двигается ползунок среднего вывода резистора. Именно эту дорожку и нужно почистить спиртом от грязи.

Удобно делать так: взять шприц (допустим на 2 куба), набрать в него спирта, и аккуратно через иголку шприца нанести несколько капель прямо на дорожку резистора. После этого мы начинаем в разные стороны вращать это сопротивление, чтобы спирт разошелся по всей дорожке и тем самым расчистил путь для ползунка.

Как почистить резистор в домашних условиях.

В принципе и этого достаточно, чтобы после сборки и установки подстроечного резистора на свое рабочее место схемы мы наслаждались нормальной его работой без прежних неполадок. Хотя если позволяет место на самом резисторе, можно еще аккуратно пройтись и ваткой, что полностью уберет всю грязь с ползунковой дорожки.

Ну, а далее нам нужно обратно собрать наш обновленный резистор и поставить его на свое рабочее место. В большинстве случаев после такой чистки электрическое сопротивление полностью восстанавливается, пропадает прерывистость его работы.

Советуем изучить Гофротруба

Сложные случаи очистки

В очень редких случаях дело не в грязи, а например разрушении этой дорожки в результате чрезмерного перегрева. Это может произойти в случае, когда случайно на этот резистор было подано слишком большое напряжение, а мощность этого сопротивления недостаточно большая, чтобы быстро рассеять выделяемое тепло от большого тока. Вот и происходит сильный нагрев дорожки переменного резистора с последующим ее разрушением. Тут уж чистка спиртом не поможет.

Нужна полная замена этого резистора на новый, заведомо рабочий. И, естественно, перед установкой нового резистора на старую схему проверьте ее, чтобы не повторился процесс разрушения дорожки уже с новым сопротивлением.

К сожалению, не все типы переменных и подстроечных резисторов можно почистить вышеперечисленным способом. Иногда встречаются сопротивления в цельном корпусе, что не дает возможности добраться до ползунковой дорожки.

Тут можно пойти на крайние меры. Сделать в корпусе небольшое отверстие (сверлом 0,8-1 мм). Ну и через него уже шприцом через иглу влить спирт. Далее опять крутим в разные стороны ручку резистора и потом нужно подождать пока спирт полностью испарится.

Можно этот переменный резистор немного подогреть (градусов так до 50), это ускорит испарение спирта. Хотя чистый спирт является диэлектриком, ток он через себя не проводит. Следовательно, и не будет отрицательно влиять на работу переменного резистора, если даже на нем и останется немного спирта, который все равно испарится.

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector