Как правильно монтировать с расходомерами: способы регулировки, настройка системы
Содержание:
- Датчики расхода воздуха в промышленности
- Вихревые расходомеры
- Ультразвуковые расходомеры
- Сенсоры
- Особенности расходомеров коллектора
- Электронные ДМРВ
- Тепловые расходомеры
- Цены на расходомеры для сточных вод.
- Преимущества и недостатки кориолисовых счетчиков
- Физические принципы
- Возникновение проблемы
- Значение надписей и символов на счетчиках
- Кориолисовы расходомеры
- Появление проблемы
- Ручная регулировка температуры теплоносителя
- Нужен расходомер или нет?
- Ротационный расходомер
- Особенности настройки коллектора Valtec без расходомеров
Датчики расхода воздуха в промышленности
Промышленные расходомеры воздуха — это приборы для определения степени расхода рабочего вещества, в данном случае воздуха, газа, который проходит через трубопровод.
Виды
Расходомер сжатого воздуха в промышленности применяется почти во всех ее сферах, в частности: компрессорные установки в любых отраслях, производство, лаборатории, химическая и газовая отрасль, системы вентиляции.
В промышленности используются следующие типы расходомеров:
- вихревые. Состоят из датчика из двух чувствительных частей: обтекаемого и пьезосенсора. Часть с этими деталями помещается внутрь трубопровода. Проходя через обтекаемое тело поток образует завихрения определенной формы и частоты, которые зависят от параметров воздуха. Пьезоэлемент реагирует на трансформации потока, подает сигнал на электронику, которая проводит расчет, выводит на дисплей количество пропущенного вещества;
- ротаметрические. Это корпус со шкалой, около которой капсула внутри с поплавком-индикатором. Положение указателя зависит от объемного расхода газа;
- тахометрические — крыльчатку крутит поток газа, скорость регистрируется электроникой, которая и вычисляет количество вещества;
- кориолисовы. Колебания Трубки в форме буквы U вызывают закручивание газ, величина сдвига фаз зависит от его расхода, который и измеряется по углу завихрений. Чаще применяются для жидкостей;
- измерители перепадов давления. Поток проходит через сужающуюся шайбу, трубку, сопло при этом измеряется давление, которое возрастает/понижается в зависимости от интенсивности движения вещества.
- ультразвуковые. Измеряется УЗ волна, пропускаемая через среду;
- калориметрические. Расходомер сжатого воздуха работает по следующему принципу: поток нагревается внешними источниками, при движении датчики фиксируют изменение t°.
Промышленный расходомер также может измерять температуру, объемный расход в м. куб за мин., скорость потока. Используются механические и цифровые (пленочные, проволочные термоанемометр, пьезопленочный элемент) варианты изделий, принцип которых аналогичный автомобильным. Устройства устанавливаются на втягивающем тракте.
Пример характеристик модели ЕЕ 75:
Вихревые расходомеры
В таких приборах проводится измерение частоты колебаний, возникающих в потоке газа или жидкости в момент обхождения препятствий. Обтекание приводит к образованию вихрей (собственно, поэтому этот тип устройств и получил свое название), а величина изменения завихрений позволяет вычислить силу потока.
Недостатки
- В сечении есть механические препятствия, мешающие движению среды.
- При загрязнении тела обтекания точность измерения существенно снижается.
- Прибор чувствителен к изменениям температуры.
- Возникновение вибраций влияет на результаты.
- Измерения возможны в малом динамическом диапазоне.
Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.
Ультразвуковые расходомеры
Расходомеры этого типа дополнены передатчиками УЗ-сигналов. Скорость прохождения сигнала от передатчика до приемника будет меняться каждый раз при движении жидкости. Если ультразвуковой сигнал идет по направления потока, то время уменьшается, если против – увеличивается. По разности времени прохождения сигнала по потоку и против него и рассчитывается объемный расход жидкости. Как правило, такие устройства комплектуются аналоговым выходом и микропроцессорным блоком управления, а все отображаемые данные выводятся на LED-дисплей.
Достоинства ультразвуковых расходомеров
- Устойчивость к вибрациям и ударам.
- Стабильный долговечный корпус.
- Подходят для нефтеперерабатывающей промышленности и систем охлаждения.
- Выполняют замеры расхода воды и жидкостей, подобных воде по физическим свойствам.
- Работают в среднем динамическом диапазоне измерений.
- Могут монтироваться на трубопроводы больших диаметров.
Недостатки
- Повышенная чувствительность к вибрациям.
- Восприимчивость к осадкам, поглощающим либо отражающим ультразвук.
- Чувствительность к перекосам потока.
Сенсоры
Основой для создания и передачи импульсов вихревого расходомера является сенсор. Эти устройства бывают следующих типов:
- Пьезоэлектрические или «крыло». Самый простой и надежный. Работает от вихревого давления. Образует аналоговые импульсы, которые преобразуются в цифровые, проходя через частотный усилитель.
- Пьезоэлектрические, пульсирующие. Схожие с выше описанными. Применяются для работы под высокой температурой.
- Ультразвуковые. Принцип работы подобных устройств основан на ультразвуковом прохождении через вихревой поток. Источник ультразвука монтируется напротив приемника. Звук с определенной частотой проходит через газовый вихрь и уже в преобразованном состоянии попадает на приемник. Устройство преобразует колебания в электрические импульсы и передает их на усилитель.
От сенсора зависит точность получаемых и преобразованных данных.
Особенности расходомеров коллектора
Характеристики технических сторон ротаметров для теплых полов:
- функционируют полностью автономно, не требуют каких-либо источников питания;
- дают возможность использовать теплоноситель в максимальных объемах при минимально возможном расходе. Таким образом, в помещении, квартире, доме, еще больше понижаются энергозатраты остальных нагревателей, иного отопления. А также освобождаются дополнительные ресурсы, которые можно применить на другие цели;
- приборы способные обеспечивать полный контроль над количеством теплоносителя, поступающим в трубки отопительного контура пола;
- монтаж чрезвычайно простой: изделие вкручивается в уже существующее под него посадочное место в коллекторе. Такая же элементарная балансировка: вентилем, регулировочными кольцами. При этом выставленные уровни видны на шкале;
- не требует особого обслуживания. Единожды выставленное положение поршня держится, пока его не изменит пользователь.
Важной особенностью является то, что расходомер устанавливается вместе с коллектором — эти два узла взаимосвязанные, именно ими контролируют, эффективно и просто настраивают, балансируют водяной отапливаемой пол
Электронные ДМРВ
Электронные варианты измерителей без подвижных механических узлов, надежнее, результаты точнее, не зависят от t° окружающей, рабочей, измеряемой среды.
Пластинчатые, проволочные
Другие названия пластинчатого ДМРВ — Hot Wire MAF Sensor. Базой тут выступает теплообменник с 2 тонкими полосами из сплава с добавлением платины, нагреваемые электричеством. Одна часть — рабочая, другая — контрольная. Работа основывается на разнице t° на каждой полоске. Их подвидом являются такие же устройства, но вместо пластины используется проволока.
Алгоритм: поток проходит через теплообменник, схема регистрирует интенсивность охлаждения, реагирует увеличением/понижением подающегося на нее тока, чтобы держать определенную постоянную разницу t° на сенситивных элементах.
Изменения подаваемого электричества и обрабатывает ЭБУ, определяя параметры поступления воздуха.
Этапы работы более подробно:
- электросхема держит платиновую нить/пластину стабильно нагретой. Сплав имеет низкое сопротивление, стойкий к окислению, к химическим веществам, почти полностью не подвержен коррозии;
- конструкция создана так, что походящий поток охлаждает рабочую нить;
- по мере остывания проволоки на нее электронной схемой подается более мощный ток для того, чтобы обеспечить стабильность нагрева;
- преобразователь переводит токовые показатели в значения разности потенциалов, напряжения. Результат измерения и пропущенное количество кислорода имеют определенную зависимость. Точное уравнение интегрировано в ЭБУ, по этому алгоритму система решает, сколько воздуха требуется в конкретный момент;
- проволочные разновидности имеют опцию самоочистки, при которой платиновый элемент накаляется до +1000° C, при этом с его поверхности испаряются разные химвещества, загрязнения. Такие циклы постепенно истончают нить, что является причиной погрешностей, постепенному износу проволоки.
Пленочные, мембранные
Другие названия — Hot Film Air Flow Sensor, HFM. Сенситивные части — это кремниевые с платиновым напылением полоски.
Существует 2 типа указанных детекторов:
- термоанемометрические с сенситивными элементами пленочного типа;
- с диафрагмой утолщенного типоразмера.
Сначала опишем термоанемометрический вариант. Изделие являет собой усовершенствованный проволочный вариант. Но вместо нити применен кристалл Si, на поверхности платиновые прослойки, выполняющих роль резисторов, а именно: нагревательного, термоизмерительных (2 шт.) и датчика t° входящего вещества.
Как и у проволочного ДМРВ, сенситивная деталь находится в проходе для потока, и она постоянно подогретая электросхемой с нагревателем. При вхождении потока внутрь канала меняется его термопараметры, что отслеживается резисторами на 2 концах данного пути. Разница показаний — это разность потенциалов, оно же постоянное напряжение (0…5 В). Такой аналоговый импульс, подается на ЭБУ, там оцифровывается и обрабатывается.
Диафрагменный. Это вторая разновидность пленочных изделий, в них сенситивными деталями выступает утолщенная диафрагма на керамике. Активный детектор изделия отслеживает степень разрежения на коллекторе впуска по деформациям такой пленки. Последняя может трансформироваться, образовывая небольшие вздутия. Внутри размещены пьезоэлементы, преобразовывающие влияния потока в электроимпульсы, идущие на ЭБУ для обработки там.
Учет разница температур — основа почти всех вариантов детекторов количества воздуха в автомобиле (кроме устаревшего лопаточного), именно поэтому в большинстве случаев применяют два по-разному чувствительных элемента (или значение измеряется с разных сторон такой детали). И это логично, так как на температуру силовую установку влияют погодные условия подобные факторы, должен быть инструмент, обходящий их, таковым и является разница значений на чувствительных элементах ДМРВ.
Тепловые расходомеры
Тепловой
расходомер состоит из нагревателя 1 и двух датчиков температуры 2 и 3, которые
устанавливаются снаружи трубки 4 с измеряемым потоком. При постоянной мощности
нагревателя количество тепла, забираемое от него потоком, будет также
постоянным. Поэтому с увеличением расхода Q нагрев потока будет уменьшаться,
что определяется по разности температур, измеряемой термодатчиками 3 и 2. Для
измерения больших расходов измеряют не весь поток Q, а лишь его часть Q1,
которую пропускают по трубке 4. Эта трубка шунтирует участок трубопровода 5,
снабженный дросселем 6. Проходное сечение дросселя определяет верхнюю границу
диапазона измеряемых расходов: чем больше это сечение, тем большие расходы
можно измерять (при той же мощности нагревателя).
Цены на расходомеры для сточных вод.
Кросс-корреляционные приборы учета сточных вод на сегодня являются наиболее точными, надежными и стабильными из всех имеющихся на рынке расходомеров. Но цена их выше, чем у Доплеровских расходомеров и, тем более, уровнемеров. Если вы имеете дело с небольшой трубой, с небольшим потоком и если годовые платежи за воду по данному узлу учета существенно ниже стоимости высококачественного расходомера, то, возможно, вам будет выгоднее использовать более дешевую (хотя и менее точную) систему — уровнемер или Доплер. При этом интересно, что на Доплеровские расходомеры сточных вод фирма Nivus держит вполне лояльные цены, ниже большинства импортных поставщиков, в силу того, что основной упор Nivus делает на наиболее надежные кросс-корреляционные системы. Что касается каналов с большим расходом, то для них метод кросс-корреляции в настоящее время является наилучшим.
Преимущества и недостатки кориолисовых счетчиков
Преимуществами этих расходомеров, из-за которых они пользуются хорошей репутацией, являются:
- Отсутствие потребности в прямолинейном участке для монтажа прибора, в отличие от других измерителей.
- Высокая точность фиксируемых параметров массового замера.
- Измерение массы, а также плотности перемещаемого вещества с использованием прямого метода.
- Возможность использования функции, которая позволяет, измеряя двухкомпонентную среду, определять массовую долю каждого составляющего компонента в отдельности.
- Практически полное отсутствие погрешности во время проведения замеров реверсивных потоков.
- Невосприимчивость к помехам и вибрациям.
- Возможность осуществления корректировок расходуемых объемов в зависимости от давления и температуры вещества.
- Встроенный набор стандартов HART с протоколом обмена, позволяющий осуществлять беспроводное и проводное подключение датчиков.
- Работа в диапазоне температур от −60 ℃ до +70 ℃.
- Способность самостоятельно осуществлять диагностику электронных блоков на предмет их неисправности.
- Наличие SD-карты, на которой сохраняются исходные настройки оборудования.
- Возможность настройки, проверки и передачи результатов измерения удаленно.
Недостатки массовых счетчиков заключаются в следующем:
- У этих приборов сравнительно сложная конструкция, которая делает их более дорогими в производстве.
- Их расходомерные трубки имеют ограничения в размере диаметра, так как рассчитаны на измерение среды, находящейся под высоким давлением.
Такие недостатки в полной мере компенсируются качеством работы массового расходомера.
Физические принципы
Вихревые расходомеры используется в качестве устройств для подсчета объемов расхода пара, жидкости, газа. Сконструирован вихревой расходомер с использованием принципа Кармана. Данный принцип основан на физическом законе обтекания и завихрения газов. Согласно ему, если газ движется при определенном давлении и обтекает плохо обтекаемые предметы, то за этими предметами создаются вихри. В зависимости от величины проходящего давления, вихри образуют области повышенного и пониженного давления.
В данном принципе основополагающую роль имеет давление проходящего газа. Низкому давлению свойственна низкая скорость перемещения в пространстве. В такой ситуации, за плохо обтекаемыми предметами не может образоваться вихрь. В этом случае недостаточная скорость перемещения является ламинарной. Высокое давление образует большую скорость, а значит среду для вихревого образования. Такая скорость считается турбулентной. Скорость потока газа или пара является безразмерной величиной. Но ее рассчитывают, для того, чтобы создать возможности для увеличения давления до турбулентных скоростей. Для этого берется значение Рейнольдса или Re. Согласно этому значению, турбулентная скорость начинает находится в пределах 1000–2500Re.
Для работы вихревых расходомеров используется еще одна неизменная величина.
Это число Струхаля или Sh. Данная величина определяет постоянство колебаний газа при прохождении в средах с геометрическим размером сечений, иными словами по трубам. Согласно величине Sh, при скоростях движения газа от 20 тысяч до 7 миллионов Re, число Струхаля неизменно. Этот эффект дает возможность при постоянной скорости производить наиболее устойчивые завихрения, а значит производить самые точные подсчеты.
Возникновение проблемы
- Вы монтируете контуры тёплого пола в ванной, гостиной и кухне;
- Они подключаются к одному коллектору;
- Площадь ванны, кухни и гостиной явно различается, поэтому и длина контура тёплого пола будет различаться в каждой комнате, соответственно расход теплоносителя (воды) будет разным.
Проблема с радиаторами легко решаема, ведь в инструкции сказано, что, установив на каждую батарею терморегулятор, вы сможете управлять количественным расходом. Обычно терморегулятор – это обычный вентиль. Подобно проблема решается и с системой тёплого пола.
Подключая контуры напольного обогрева к одной коллекторной группе, вы можете сбалансировать их двумя способами:
Значение надписей и символов на счетчиках
Условные обозначения и надписи на водомерах могут многое рассказать о приборе. Поэтому нужно научиться их расшифровывать, чтобы выяснить те или иные возможности изделия и определить, какой счетчик подойдет для конкретных условий.
Производители наносят на устройства четыре основных обозначения:
- Qmax — предельная скорость потока, не вызывающая погрешностей в работе прибора. Работать при таком значении скорости потока прибор может максимум 1 час. За этим обязательно должен следовать перерыв.
- Qn — оптимальный расход для водомера. По отношению к его максимальной возможности, этот параметр на 50% меньше. В случае, когда сквозь корпус прибора проходит объем воды, равный нормальному расходу, он будет функционировать безошибочно. Устройство сможет пройти поверку и его еще долго не придется менять на новый.
- Qmin — наименьшая скорость потока, которая при измерении расхода воды дает самую незначительную погрешность.
- Qt — давление, при котором водомерное устройство эксплуатировать невыгодно, поскольку оно начинает работать со значительной погрешностью. При этом трудно предугадать с каким знаком будет значение погрешности — может быть как минус, так и плюс к реальным показаниям.
Кроме этих обозначений, на корпусе водомера нанесена максимальная температура, при которой прибор может функционировать.
В продаже есть счетчики для горячей и холодной жидкости. Встречаются и универсальные, работающие в большом температурном диапазоне без погрешностей
На расходомерах холодной воды присутствует надпись 40 °C, а корпус синего цвета. Кожух расходомеров для горячей воды имеет красный цвет или, что встречается значительно реже, черный. На этом фоне обязательно будет надпись 90 °C.
Если централизованно подается под давлением вода, температура которой превышает 90 °C, нужно остановить выбор на счетчике, имеющем надпись 150 °C.
Кориолисовы расходомеры
В основе действия – эффект Кориолиса: U-образные трубки подвергаются колебаниям при движении, а вибрационные колебания, в свою очередь, вызывают закручивание вещества. Величина сдвига фаз зависит от массового расхода жидкости или пара. Расход измеряется с учетом образуемого угла закручивания. Чаще всего такие расходомеры применяются для жидкостных сред, в том числе для красок, лаков, жидких полимеров.
Преимущества
- Массовый расход измеряется напрямую.
- Осадки или загрязнения, растворенные в жидкости, не влияют на результаты измерений.
- Препятствий во внутреннем сечении нет, система работает стабильно.
- Подходят для измерения всех типов жидкости, вне зависимости от их электрической проводимости.
Недостатки
- Дороговизна, сложные технологические компоненты.
- Необходимость высокоточного монтажа.
- Точность проведения замеров может изменяться при сильных вибрациях.
Появление проблемы
В первую очередь, нужно разобрать определенный пример появления такой проблемы и её следствия:
- Вы монтируете контуры тёплого пола в ванной, гостевой и кухонной комнате;
- Они подсоединяются к одному коллектору;
- Площадь ванны, кухни и гостевой откровенно отличается, благодаря этому и длина контура тёплого пола будет различаться в любой комнате, естественно расход носителя тепла (воды) будет абсолютно разным.
Необходимо сказать о том, к чему это приведёт. Короткие обогревательные кольца имеют меньшее гидравлическое противодействие, благодаря этому вода в них двигается намного быстрее, чем в длинных контурах, от чего появляется температурная разница в помещениях при одинаковой температуре подаваемого из коллектора носителя тепла.
Примером решения проблемы, на котором мы разберём принцип исправления, послужит примитивной настенный радиатор. Если присоединить к одному коллектору различные по количеству секций и длине труб радиаторы, то появится описанная выше проблема (прочтите: «Схема коллектора пола с подогревом – как все должно работать»).
Проблема с радиаторами легко решаема, потому что в инструкции сказано, что, установив на каждую батарею термостат, вы сумеете управлять количественным расходом. В большинстве случаев термостат – это традиционный вентиль. Сродни проблема решается и с системой тёплого пола.
Ручная регулировка температуры теплоносителя
Способы регулировки температуры будут полностью зависеть от используемого оборудования. Например, если установлена система с контроллером температуры и сервоприводом, то настройка осуществляется согласно инструкции от производителя этого устройства. При этом регулировка выполняется в автоматическом режиме. Сейчас рассмотрим ручной метод настройки температуры с использованием термоголовок.
Монтаж термоголовок можно выполнять как на подачу, так и на обратку теплоносителя.
Первым делом систему до теплого пола необходимо полностью заполнить теплоносителем и освободить от воздуха
Но здесь важно не спешить, иначе могут образоваться воздушные пробки. Если подключение было выполнено от котла, то перед запуском воды в контуры отопления, перекрываете все краны. После, открываете на одной петле подачу/обратку, заполнив ее теплоносителем
Воздух из нее должен выйти через воздухоотводчик. Теперь включаете циркуляционный насос, чтобы в этой петле теплоноситель начал передвигаться. При этом включаете на котле температуру до 35°. На ощупь вы должны почувствовать, что на обратке и подаче в контуре отопления пошла горячая вода. Если все работает исправно, перекрываете эту петлю и открываете новую. По такому методу закачиваете и проверяете каждую петлю отопительного контура. Когда вы настроили каждый контур, то открываете все краны и регулируете необходимую температуру на ощупь. В некоторых петлях кран потребуется открыть полностью, а в других достаточно слегка приоткрыть
После, открываете на одной петле подачу/обратку, заполнив ее теплоносителем. Воздух из нее должен выйти через воздухоотводчик. Теперь включаете циркуляционный насос, чтобы в этой петле теплоноситель начал передвигаться. При этом включаете на котле температуру до 35°. На ощупь вы должны почувствовать, что на обратке и подаче в контуре отопления пошла горячая вода. Если все работает исправно, перекрываете эту петлю и открываете новую. По такому методу закачиваете и проверяете каждую петлю отопительного контура. Когда вы настроили каждый контур, то открываете все краны и регулируете необходимую температуру на ощупь. В некоторых петлях кран потребуется открыть полностью, а в других достаточно слегка приоткрыть.
Температура теплоносителя в каждом контуре может быть разной. Это объясняется несколькими причинами, например, длиной петли. Чем короче контур, тем быстрее он прогревается и наоборот.
Таким образом, осуществляется ручная регулировка температуры. Ее достаточно выполнять один раз в год
Но здесь важно учесть нюанс. Система напольного обогрева инерционна
Что это означает на практике? Если вы сделали изменения на одной из петель, то придется подождать несколько часов, чтобы почувствовать явные изменения в температуре внутри помещения.
Если вы на коллектор установили расходомеры, то разница между показаниями может достигать до 0,5 л.
Нужен расходомер или нет?
Расходомер — прибор, предназначенный для корректировки работы нагревательного пола, который чаще используется в многоконтурных водяных конструкциях. Без него, сложно добиться надлежащего обогрева помещения. Произвести регулировку в ручном режиме коллектор тёплого пола очень сложно.
Проведение настройки контуров тёплого пола по расходомерам — нормирование потоков жидкости по змеевикам. Ведь в зависимости от размера ветки, требуется разное её количество, которое двигаясь по петле, остывало бы строго по расчётному показателю.
В конструкции без расходомера:
- Температура в разных помещениях будет отличаться;
- Обогрев полов приведёт к перерасходу энергии.
Так как, во-первых, сложно точно вычислить длину змеевика, а во-вторых нарушается правило при выборе параметров оборудования — отталкиваться от потребностей устройства, а не наоборот. Кроме того, расчёт данным способом приведёт к тому, что объём жидкости в контурах будет отличаться от расчётного показателя.
Ротационный расходомер
В измерительной камере ротационного расходомера находятся два ротора, расположенные поперек потока и соединенные шестернями так, что одним краем каждый ротор касается стенки камеры, а противоположным – другого ротора. При поступлении воздуха роторы под его напором приходят в движение и начинают обкатываться друг по другу, отсекая определенные порции газа так, что каждый оборот соответствует определенному объему. Счетчик посредством механической передачи фиксирует число вращений роторов, а затем это значение переводится в значение объема.
Данные расходомеры имеют широкий диапазон, низкую погрешность и высокую стабильность, однако крайне восприимчивы к загрязнению, имеют подвижные части и могут использоваться только для относительно малых диаметров.
Особенности настройки коллектора Valtec без расходомеров
Если коллектор не оснащен расходомерами, а только клапанами, придется выставлять расход на ощупь. Это не фигурально, а буквально. Зная длину каждого контура, на самом длинном открываем поток на максимум. Остальные прикручиваем примерно. Можно посчитать количество оборотов вентиля и ориентироваться на них.
Далее запускаем отопление и ждем, пока прогреется пол. Если есть термометр — измеряем температуру пола в зоне работы каждого контура. Нет термометра — щупаем и сравниваем ощущения. По результатам корректируем положение вентилей и снова ждем несколько часов. Так действуем до тех пор, пока результат не устроит. В принципе, коллектор Valtec с вентилями без расходомера настроить не так сложно.
Оценка настройки коллектора по температуре в обратном трубопроводе
Эта проверка основывается на том, что при правильно настроенном расходе, температура в обратке на всех контурах должна быть одинаковой. Для настройки или проверки такого типа нужны специальные термометры. Они устанавливаются на обратном трубопроводе между входом коллектора и трубой.
За эталонную берут температуру самого длинного контура — все остальные подстраивают под нее. Только результаты подстройки надо будет откорректировать спустя несколько часов. Когда пол, обогреваемый регулируемыми контурами прогреется или остынет (в зависимости от регулировки) и температура в обратном трубопроводе снова изменится. Таких настроек потребуется несколько, пока разница станет незначительной.