Переменные и подстроечные резисторы. реостат
Содержание:
- Основные параметры переменных резисторов.
- Технология изготовления переменных резисторов
- Типы и разновидности
- ЦП для программирования в схемах
- Ремонт переменного резистора своими руками
- Основные параметры
- Ремонт переменного резистора своими руками
- Последовательное подключение
- Обозначение переменных резисторов на схемах.
- Принцип работы
- Подстроечный потенциометр
- Типы потенциометров
- Основные параметры переменных резисторов.
- Основные свойства переменных резисторов
- Цифровые и механические потенциометры: отличия
- Как подключить потенциометр к Ардуино
Основные параметры переменных резисторов.
Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п
Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику
Номинальное сопротивление
Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.
У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.
Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.
Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.
Рис. 3 — Обозначение номинального сопротивления на корпусе переменных резисторов
Форма функциональной характеристики
Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.
Существуют три основных закона (рис. 4):
А — Линейный,
Б – Логарифмический,
В — Обратно Логарифмический (Показательный).
Например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.
Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.
Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.
Рис. 4 — График функциональных характеристик переменных резисторов
Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.
Рис. 5 — Вариант конструкции резистивного элемента
Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. При эксплуатации аудиоаппаратуры, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.
Технология изготовления переменных резисторов
Существует классификация, которая зависит от технологии изготовления резисторов. Во время производственного процесса используются разные этапы и схемы. Сегодня можно выделить следующие конструкции:
- Проволочный переменный резистор. Подключение производится по простой технологии, которую сможет освоить даже начинающий специалист. Его наматывают из проволоки, где есть высокие показатели удельного сопротивления. При этом используется каркас. Эти конструкции имеют большую паразитную индуктивность. Чтобы значительно снизить этот показатель, нужно применять бифилярную намотку. Проволочные резисторы в некоторых случаях могут изготавливаться из прочного микропровода.
- Металлопленочные резисторы. Их еще принято называть композитными. В них имеется резистивный элемент, который представлен в виде тонкой пленки. Ее получают из металлических сплавов или композитных материалов. Такие конструкции обладают высокими показателями удельного сопротивления и низким коэффициентом термического сопротивления. Проволоку наносят на цилиндрические керамические сердечники. Сегодня именно этот тип элементов пользуется особенным спросом, поэтому люди чаще всего спрашивают композитный переменный резистор. Подключение выполняется любым из вышеописанных способов.
Типы и разновидности
По способу монтажа различают 2 вида подстроечников – для навесного и поверхностного монтажа (ПМ). Первые – крупногабаритные, навесной монтаж не налагает особых ограничений к размерам элементов. Вторые – малогабаритные, к их размерам предъявляются высокие требования. Следует иметь в виду, что промышленность не выпускает проволочные подстроечные резисторы.
Резисторы однооборотного исполнения различаются по расположению органа управления, который обычно доступен только для специальной отвёртки. Он может располагаться сбоку или сверху. Все зависит от того, в каком положении к нему более удобен доступ. Форма корпуса обычно кубическая, реже — цилиндрическая.
Многооборотные подстроечники бывают преимущественно двух видов – с кубической и продолговатой формой корпуса. Орган управления может располагаться сверху или сбоку, в зависимости от требований к конструкции устройства.
Существуют и другие разновидности этих резисторов, но для этого нужно уже обращаться к справочным изданиям.
ЦП для программирования в схемах
Если цифровые потенциометры используются для программирования различных уровней в схемах или для калибровки в устройствах датчиков, то именно их состояние определяет скорость и точность регулировки при подключении к питанию.
В продаже есть много разных видов ЦП, отличающихся возможностями пользовательской настройки состояния при включении, но основных категорий лишь две:
- Энергонезависимые кристаллические резисторы, у которых есть элемент памяти. Именно последний фиксирует положение движка при подключении устройства.
- Энергозависимые. Эти виды ЦП не обладают памятью, поэтому в них движок занимает положение нулевое, среднее или верхнее при подключении к питанию в зависимости от их конструкции. Чтобы установить его правильно, следует изучить инструкцию с техническими параметрами.
Первые варианты ЦП можно разделить на 3 вида по используемому в них типу памяти:
- Электрически стираемые или перепрограммируемые (EEPROM). В них данные могут стираться и заново записываться неограниченное количество раз.
- С однократной программой.
- Многократно программируемые.
Подобное разделение помогает подобрать оптимальный вид потенциометра под конкретную схему или систему. Так, в аппаратуре, где необходима постоянная (частая) настройка, например, звука в аудиосистеме, можно установить энергозависимый вариант.
Если в устройстве нужно настроить один раз параметры для его использования, например, заводские настройки, то подойдет тип с ОРТ. Он остается неизменным на все время его эксплуатации.
Цифровой потенциометр способен принять только ту амплитуду сигнала, которая заложена в рамках его верхнего и нижнего показателя напряжения питания. Если планируется применить его для проведения переменного тока, то лучше воспользоваться резисторами с двухполярным питанием.
Ремонт переменного резистора своими руками
Из-за износа проводящего слоя и ослабления нажима подвижного контакта переменное сопротивление начинает плохо работать, генерируя «шумы», или совсем прийти в негодность.
Способы ремонта сопротивления в разобранном виде:
- С помощью простого карандаша, грифель которого состоит из чистого твердого углерода – слегка отогнуть пружину подвижного контакта, несколько раз провести грифелем по проводящему слою для восстановления последнего. Это метод более эффективен для тонкопленочных сопротивлений.
- Грифель простого карандаша растереть в пыль, смешать с литолом (или аналогичной смазкой), полученной смесью смазать дорожку, по которой движется ползунок.
Сопротивление в неразборном корпусе починить сложнее, но можно – просверливаем в корпусе отверстие (диаметром около 1мм), заливаем шприцом немного чистого спирта, крутим ручку. После полного испарения спирта работоспособность регулировочного элемента восстанавливается.
Для нормальной работы электрической цепи важно грамотно проанализировать условия работы всех элементов – зная характеристики, назначение, схемы подключения и условия эксплуатации, можно обеспечить надежную и долгую работоспособность регулируемых сопротивлений в бытовых приборах и электронных устройствах. Источник
Источник
Основные параметры
Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности
Как вы уже, наверное, поняли, придется еще и другие принять во внимание:
- Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
- Рабочая температура.
- Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
- Эффективный угол поворота регулятора.
Параметры мощных переменных резисторов
Конечно, основные параметр важны и именно они являются определяющими
Но стоит обращать внимание и на температурный режим
Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры
Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.
Ремонт переменного резистора своими руками
Из-за износа проводящего слоя и ослабления нажима подвижного контакта переменное сопротивление начинает плохо работать, генерируя «шумы», или совсем прийти в негодность.
Способы ремонта сопротивления в разобранном виде:
- С помощью простого карандаша, грифель которого состоит из чистого твердого углерода – слегка отогнуть пружину подвижного контакта, несколько раз провести грифелем по проводящему слою для восстановления последнего. Это метод более эффективен для тонкопленочных сопротивлений.
- Грифель простого карандаша растереть в пыль, смешать с литолом (или аналогичной смазкой), полученной смесью смазать дорожку, по которой движется ползунок.
Сопротивление в неразборном корпусе починить сложнее, но можно – просверливаем в корпусе отверстие (диаметром около 1мм), заливаем шприцом немного чистого спирта, крутим ручку. После полного испарения спирта работоспособность регулировочного элемента восстанавливается.
Последовательное подключение
Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее.
А падения напряжений суммируются:
Исходя из этого, можно сделать выводы:
- объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
- при выходе из строя одного светодиода произойдёт обрыв цепи;
- количество светодиодов ограничено напряжением БП.
Обозначение переменных резисторов на схемах.
На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.
Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования
. А если есть необходимость, то дополнительно указывают и число ступеней.
Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры
, сопротивления которых изменяется одновременно при поворотеобщей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.
Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1
является первым по схеме резистором сдвоенного переменного резистора R1, аR1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.
Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.
В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.
Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.
Принцип работы
Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:
Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:
Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:
P=U2/R=I2R
Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:
Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.
Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.
Подстроечный потенциометр
Подстроечный потенциометр (еще его называют триммер) больше похож на потенциометр предварительной настройки, чем на классический потенциометр, поскольку вместо большого вращающегося вала у него имеется маленькая пластиновидная ручка с вырезом под отвертку. Но в отличие от потенциометра предварительной настройки предполагается более частое использование, например, во время плановой калибровки какого-либо оборудования. Внешний вид подстроечного потенциометра показан ниже.
Если мы возьмем вывод A и вывод B и повернем ручку в направлении по часовой стрелке, сопротивление потенциометра будет увеличиваться от 0 до максимального. Когда мы перемещаем ручку в направлении против часовой стрелки, сопротивление уменьшается.
Если мы возьмем клемму B и клемму C и повернем ручку в направлении против часовой стрелки, сопротивление потенциометра будет увеличиваться от 0 до максимального. Когда мы перемещаем ручку по часовой стрелке, сопротивление уменьшается.
Типы потенциометров
Потенциометр может быть:
- прямолинейные или поворотные;
- линейный или логарифмический («аудио») или антилогарифмический («обратный звук») ;
- аналоговый или цифровой;
- моно или стерео;
- с положением остановки или без него (наличие небольшой выемки при полном повороте влево, связанной с переключателем);
- с центральной выемкой («выемчатая», позволяет иметь «нулевую» позицию в центре дорожки);
- связанный (цифровой потенциометр, управляемый аналоговым потенциометром).
Линейный потенциометр
Линейный потенциометр — это потенциометр, значение сопротивления которого изменяется пропорционально расстоянию между его выводами и курсором. Он используется, например, в источнике переменного напряжения. Этот принцип используется в измерительных устройствах, таких как штангенциркуль .
Вариация прогрессивная: когда курсор находится в центре дорожки, омическое сопротивление, которое можно измерить между курсором и концом «a», такое же, как сопротивление , которое можно измерить между курсором и «другим концом». b «: R a = R b (таким образом, если потенциометр — модель 100 кОм , R a = R b = 50 кОм ). Когда курсор находится на 80% пути (около верхнего предела), R a = 20% от общего сопротивления, R b = 80% от общего сопротивления. Это тип потенциометра, который используется по умолчанию, если ничего не указано автором электронной схемы, за исключением потенциометра объема (в этом случае требуется логарифмическая модель).
Логарифмический потенциометр
Сопротивление этого типа потенциометра изменяется логарифмически или экспоненциально , то есть значение его сопротивления увеличивается или уменьшается все быстрее и быстрее при перемещении курсора.
Изменение значения сопротивления между курсором и концом зависит от логарифмической функции. Когда курсор находится в центре дорожки, омическое сопротивление, которое можно измерить между курсором и одним концом, не такое же, как сопротивление, которое можно измерить между курсором и другим концом: R a ≠ R b . Чтобы указать порядок величины и завершить три приведенных выше примера, R a = R b, когда курсор находится на 90% от своего полного хода. Очевидно, что нельзя использовать потенциометр этого типа в электросети для точной регулировки выходного напряжения. Действительно, изменение происходит медленно, когда курсор движется к одному концу, и очень быстро, когда курсор достигает другого конца. Этот тип потенциометра в основном используется для регулировки громкости звука, чтобы «придерживаться» характеристик уха, которые точно имеют логарифмический отклик на давление, которое воздух оказывает на барабанные перепонки. Из-за этой особенности соблюдение направления соединения двух концов резистивной дорожки гораздо важнее, чем для линейного потенциометра.
Следует отметить, что технические ограничения делают невозможным производство потенциометров с действительно непрерывным изменением удельного сопротивления; в действительности точное измерение сопротивления в соответствии с положением курсора даст кусочно-аффинную функцию, аппроксимирующую логарифмическую функцию, погрешность которой зависит от качества потенциометра.
Потенциометр среднего отвода
Символ потенциометра с центральным отводом.
Потенциометр среднего отвода , который в основном использовался в старых усилителях , не использовался с конца 1980- х годов для этих приложений. Этот тип потенциометра продолжает использоваться для считывания положения и позволяет проводить дифференциальные измерения между курсором и средней точкой.
Этот тип переменного резистора с точки зрения электроники почти эквивалентен потенциометру с двумя постоянными резисторами, подключенными к двум клеммам, которые не являются курсором.
Цифровой потенциометр
Цифровой потенциометр — это активный компонент, который имитирует поведение аналогового потенциометра, но, в отличие от последнего, его сопротивление не изменяется механически при повороте. Он изменяет свое сопротивление в зависимости от числового значения (часто байта), которое он получает. Следовательно, он может принимать только конечное число n возможных значений сопротивления. Шкала соответствия между n цифровыми значениями и различными значениями сопротивления специфична для каждой модели потенциометра.
Этот тип потенциометра часто ограничен несколькими десятками миллиампер на входе и максимальным напряжением 5 вольт. Изменение полярности на его выводах может создать проблему, изменяя его сопротивление прохождению и, следовательно, вызывая нелинейные искажения сигнала.
Основные параметры переменных резисторов.
Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п
Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику
2.1. Номинальное сопротивление.
Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0
;2,2 ;3,3 ;4,7 Ом, килоом или мегаом.
У зарубежных резисторов предпочтительными числами являются 1,0
;2,0 ;3,0 ;5.0 Ом, килоом и мегаом.
Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.
Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.
2.2. Форма функциональной характеристики.
Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.
Существуют три основных закона: А
— Линейный,Б – Логарифмический,В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось пообратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.
Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому
(Б) илиобратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.
Резисторы с линейной
характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.
Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.
Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.
К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.
Основные свойства переменных резисторов
Когда человек имеет четкое представление об условных элементах графического отображения на схемах, тогда у него возникает проблема переноса чертежа в реальность. Требуется найти или приобрести отдельные компоненты уже готовой схемы. Сегодня есть большое количество магазинов, которые продают необходимые детали. Найти элементы можно и в старой поломанной радиоаппаратуре.
Переменный резистор должен присутствовать в любой схеме. Его находят в любых электронных устройствах. Эта конструкция представляет собой цилиндр, который включает в себя диаметральные противоположные выводы. Резистор создает ограничение поступления тока в цепи. В случае необходимости он будет выполнять сопротивление, которое можно измерить в омах. Переменный резистор обозначается на схеме в виде прямоугольника вместе с двумя черточками. Они расположены на противоположных сторонах внутри прямоугольника. Таким образом, человек обозначает на своей схеме мощность.
Аппаратура, которая имеется практически в каждом доме, включает в себя резисторы с определенным номиналом. Они располагаются по ряду Е24 и условно обозначают диапазон от единицы до десяти.
Цифровые и механические потенциометры: отличия
«Эволюция» резисторов не стоит на месте. Поэтому все реже в различных видах аппаратуры, начиная от любительского радио и заканчивая устройствами с ЖК-дисплеями, можно встретить механические варианты радиоэлементов. Им на смену пришли цифровые потенциометры.
Хотя пользователи отмечают, что функционал обычных резисторов и ЦП сопоставим, по техническим параметрам и надежности у последних потенциал намного выше.
ЦП и ПР — взаимозаменяемые резисторы с широкими разбегом сопротивления. Но есть у них и отличия:
- Механические потенциометры могут выдерживать большие нагрузки напряжения и успешно рассеивать мощность. Но со временем они изнашиваются, при этом их технические показатели ухудшаются. Связаны подобные изменения с особенностью конструкции ПР. Цифровым аналогам это не грозит, так как у них отсутствуют механические части, которые первыми подвергаются износу, разбалтываются или меняют форму.
- Механические резисторы очень чувствительны к встряскам и ударам, а их подвижный элемент со временем может окислиться, что также сказывается на сроке эксплуатации. ЦП состоит из нескольких микросхемных переключателей (КМОП), что делает его устойчивым к различным воздействиям — ударам, изменениям в окружающей среде, износу и другому.
Таким образом, вполне логично, что во все виды современных электронных устройств встраиваются цифровые потенциометры.
Как подключить потенциометр к Ардуино
Для этого занятия нам потребуется:
- плата Arduino Uno / Arduino Nano / Arduino Mega;
- потенциометр (переменный резистор);
- беспаечная макетная плата;
- один светодиод и резистор;
- сервопривод;
- провода «папа-папа», «папа-мама».
Схема подключения потенциометра к Arduino Uno
Потенциометр | Arduino Uno | Arduino Nano | Arduino Mega |
— | GND | GND | GND |
+ | 5V | 5V | 5V |
S | A1 | A1 | A1 |
Крайние ножки переменного резистора подключаются к портам питания (5V и GND). Средний контакт имеет подвижный контакт, на котором меняется напряжение вследствие изменения сопротивления при вращении ручки. Полярность подключения «+» и «-» роли не играет, при этом будет происходить только инверсия сигнала потенциометра. Соберите следующую схему и загрузите приведенный код в плату.
Скетч. Подключение потенциометра к аналоговому входу
void setup() { Serial.begin(9600); // запускаем монитор порта pinMode(A1, INPUT); // к входу A1 подключаем потенциометр } void loop() { int val = analogRead(A1); // считываем данные с порта A1 Serial.println(val); // выводим данные на монитор порта delay(500); // ставим задержку для удобства }
Пояснения к коду:
- при необходимости подключения нескольких потенциометров к Arduino Nano, следует их подключать к другим аналоговым входам;.
Скетч. Подключение потенциометра и светодиода
Для регулировки яркости светодиода с помощью переменного резистора, следует считывать данные с данного радиоэлемента, подключив его к аналоговому входу. В зависимости от поворота ручки потенциометра необходимо в линейной зависимости менять яркость светодиода. Это сделать довольно просто на микроконтроллере, схема подключения переменного резистора с примером кода, размещена далее.
Схема подключения потенциометра и светодиода к Ардуино
void setup() { pinMode(10, OUTPUT); // подключаем светодиод к пин 10 pinMode(A1, INPUT); // к входу A1 подключаем потенциометр } void loop() { int val = analogRead(A1); // считываем данные с порта A1 val = val / 4; // делим значения на 4 analogWrite(10, val); // меняем яркость светодиода }
Пояснения к коду:
- светодиод подключается к аналоговому выходу с ШИМ сигналом;
- данные с порта A1, которые находятся в диапазоне 0…1023, мы делим на 4 и получаем диапазон от 0 до 255 для изменения яркости светодиода.
Скетч. Подключение потенциометра и сервопривода
Сервомотор подключается к аналоговым выходам Arduino Nano. В скетче использована функция map, которая пропорционально переносит значение переменной из текущего диапазона значений в новый диапазон. Таким образом, значения с потенциометра в диапазоне 0…1023, мы переводим их в новый диапазон от 0 до 180 (угол поворота сервомотора). Соберите схему и загрузите следующий скетч.
Схема подключения потенциометра и сервомотора к Ардуино
#include <Servo.h> // подключаем библиотеку для сервопривода Servo servo; // объявляем переменную servo типа "servo" void setup() { servo.attach(10); // привязываем сервопривод к порту 10 pinMode(A1, INPUT); // к входу A1 подключаем потенциометр } void loop() { int val = analogRead(A1); // считываем данные с порта A1 val = map(val, 0, 1023, 0, 180); // переводим val в новый диапазон servo.write(val); // передаем значения для сервопривода }
Пояснения к коду:
- функция пропорционально переносит значение переменной из диапазона значений от 0 до 1023 в новый диапазон от 0 до 180;
- в самых крайних положениях (0 и 180 градусов) сервомотор может «дергаться».