Датчик температуры охлаждающей жидкости двигателя: как он работает, проблемы, симптомы, проверка

Схема датчика температуры на основе транзистора

При измерении температуры высокая точность обычно не требуется, особенно когда речь идет только о фиксации превышения заданного порогового значения. Это относится, в частности, к схемам термической защиты, которыми оснащены устройства определенного класса. Долгое время в таких схемах использовались электромеханические датчики температуры, однако в настоящее время разработчики все чаще применяют электронные компоненты, необязательно специализированные. Измерить температуру можно и с помощью обычного транзистора, как это сделано в схеме на рис. 1.

Рис. 1. Измеритель температуры на транзисторном датчике

Собственно датчиком служит переход база-эмиттер первого транзистора, так как при нагревании напряжение на переходе существенно изменяется. Два других транзистора нужны для усиления снимаемого с датчика напряжения и для его преобразования в логический сигнал, который переключается при достижении заданной температуры (обычно 80-100 °С). В данном устройстве необходимо обеспечить хороший тепловой контакт между датчиком и радиатором, как и в случае монтажа охлаждаемых компонентов. Однако на этом контакте должно соблюдаться условие полной электрической изоляции во избежание сбоев логического сигнала.

Критерии выбора датчиков температуры: на что обратить внимание при покупке устройства

Схема, по которой выбирают датчик, аналогична покупке любого другого товара:

  • Назначение. Исходя из того, какие бывают датчики температуры, покупатель выбирает товар согласно его дальнейшему прямому применению и удобству эксплуатации.
  • Техническая сторона. Большую роль здесь играет точность измерений.
  • Качество. Этот показатель влияет и на выбор производителя. Каждая компания работает с конкретным типом материала или несколькими вариантами, потому, какой фирмы лучше приобрести датчик температуры – решение за клиентом.
  • Стоимость. От вышеуказанных пунктов будет зависеть цена на датчик температуры.

Популярность моделей для большинства населения, завоевали цифровые приборы с множеством функций и возможностей. В домашних условиях модно устанавливать систему «Умный дом».

Не совершить ошибки при выборе помогут отзывы покупателей, которые без преувеличения описывают плюсы и минусы моделей. Проверить точность показаний помогут продавцы-консультанты в магазине или, прочитав руководство по эксплуатации, это можно сделать самим. Предварительно можно просмотреть обзор на понравившуюся модель в сети Интернет.

Советы:

Подключение датчика температуры нужно выполнять строго по инструкции для более точного получения измерений и долгого срока службы.
Нужно обратить внимание на диапазон измерения температуры устройством. Чем суровее климат, тем температурные рамки должны быть больше.

Схемы подключения датчиков температуры

У разных видов датчиков температуры различны и схемы подключения.

Так термосопротивления могут иметь 2-х проводную, 3-х проводную либо 4-х проводную схемы подключения. Такое разнообразие объясняется тем, что при измерении сопротивления датчика присоединенные провода имеют собственное сопротивление, которое вносит погрешность в измерения, особенно это актуально при измерении на больших расстояниях.

В случае двухпроводной схемы влияние этого дополнительного сопротивления не компенсируется, поэтому такую схему можно использовать там, где не требуется высокая точность измерений, либо на небольших расстояниях кабельных трасс.

Для уменьшения погрешности измерения применяют трехпроводную схему.

При такой схеме измеряется общее сопротивление датчика с проводами и сопротивление двух проводов и затем вычисляется разность этих значений, тем самым получается точное измеренное сопротивление датчика. Данная схема позволяет получить довольно высокую точность измерения даже при значительном влиянии сопротивления проводов. Но и в данной схеме может возникать погрешность измерения, связанная с разностью сопротивлений проводников из-за окисления контакта, неоднородности материалов, разного сечения проводов.

Четырехпроводная схема позволяет получить наиболее точные результаты измерений.

По такой схеме два провода подключаются к одному выводу датчика и два провода к другому выводу. На клеммы r1 и r4 подается измерительный ток от источника. Падение напряжения измеряется на клеммах r2 и r3, при этом если входное сопротивление измерительного прибора значительно больше сопротивления проводов (ток по этим измерительным проводам почти не течет) то значение этих сопротивлений практически не влияет на результат измерений.

Термопары подключаются к измерительным приборам по двухпроводной схеме компенсационными проводами, с соблюдением полярности подключения. Возможно также вместо компенсационных использовать провода, состоящих из материалов, сходных по своим термоэлектрическим характеристикам к материалам, из которых изготовлена термопара.

Датчики на основе PTC и NTC термисторов подключаются по стандартной двухпроводной схеме экранированным кабелем.

Также помимо перечисленных схем измерения часто применяют нормирующие преобразователи, которые преобразуют измеренное значение с датчика в унифицированный токовый сигнал 0…5 мА, 0…20 мА, 4…20 мА, реже в сигнал напряжения 0…5 В, 0…10 В.

Такой способ передачи позволяет добиться высокой помехоустойчивости сигнала, усиления слабого сигнала с первичных датчиков, работать с сигналами с разным потенциалом за счет гальванической изоляции, передавать сигнал без потерь на значительные расстояния, обеспечить унификацию всех сигналов. Также в случае с термопарами, не требуется использование дорогостоящих компенсационных проводов, достаточно обычной медной пары.

Преобразователи могут быть выполнены в виде таблетки, встраиваемой в головку датчика, так и в виде отдельно устанавливаемого прибора.

Так как статья получилась довольно объемной и больше теоретической, примеры работы температурных датчиков с реальными устройствами, такими как ПЛК, терморегуляторы, Arduino, я оставлю на следующий раз.

Терморезисторы

Терморезисторы — это температурные датчики, которые преобразуют значение температуры в сопротивление. Любой проводник имеет сопротивление, которое при изменении температуры также изменяется. Величина, которая показывает насколько изменяется сопротивление при изменении температуры на 1 0С, называется температурный коэффициент сопротивления -ТКС, и если при увеличении температуры сопротивление увеличивается, то ТКС -положительный, а если уменьшается, то отрицательный.

Основные характеристики терморезисторов:

-номинальное сопротивление;

-диапазон измеряемых температур;

-максимальная мощность рассеивания (имеется ввиду тепловая характеристика);

-ТКС.

Термисторы — это терморезисторы с отрицательным ТКС (NTC -negative temperature characteristic). Изготавливают их из оксидов различных металлов, керамики и даже кристаллов алмаза.

NTC-резисторы применяют в качестве датчиков температуры, в бытовой технике и в промышленной, от -40 до 300 0С.

Ещё одна область применения это ограничение пускового тока в различных электронных устройствах, например в импульсных блоках питания,которые есть абсолютно во всех устройствах питающихся от сети. При подключении к сети термистор имеет комнатную температуру и сопротивление порядка нескольких Ом. В момент зарядки конденсатор происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока термистор разогревается и его сопротивление падает почти до нуля, и в дальнейшем он не влияет на работу устройства.

Позисторы — терморезисторы с положительным ТКС (PTC — positive temperature characteristic). Положительным ТКС, к примеру, обладают все металлы, также их изготавливают из керамики и полупроводниковых кристаллов.

Позисторы также применяют в качестве датчиков температуры,но на этом их область применения не ограничивается, их применяют:

В качестве защитных элементов в трансформаторах, электродвигателях и других электронных приборах, в которых есть риск возникновения перегрева. Для этого позистор включают последовательно с нагрузкой — обмоткой двигателя или электронной схемой, а сам позистор непосредственно в зону нагрева — приклеивают термоклеем к обмотке или заживают хомутом или просто прижимают используя термопасту. При этом такая защита от перегрева достаточно эффективна и не имеет пределов цикла включения/выключения, так как нет никаких размыкающих контактов, просто защитный термистор приобретает высокое сопротивление и через него проходт остаточный ток,значение которого совершенно не опасно для нагрузки. Но позистор всё-же можно вывести из строя — при резком скачке напряжения, так как ток превысит номинальный. Например, если вместо 220 В придёт 380 В, сопротивление его будет достаточно низким, так как температура в норме, а вот ток который через него пройдёт превысит номинальный и он просто выгорит, разомкнув нагрузку.

Ещё одно применение — запуск электродвигателей компрессоров. Применяется такая схема в маломощных холодильных машинах — холодильниках, морозильных камерах, в которых установлены однофазные электродвигатели с пусковой обмоткой. В современных кондиционерах такую схему уже не используют, используя двухфазные электродвигатели с рабочими фазосдвигающими конденсаторами.

В этом случае рабочую обмотку подключают непосредственно к сети, а пусковую через позистор. После запуска компрессора позистор нагревается от проходящего через него тока и увеличивает своё сопротивление, отключая пусковую обмотку. Кстати из-за этого при кратковременном пропадании питающего напряжения, компрессор может не запуститься, так как термистор не успеет остыть и выйдет из строя из-за перегрева основной обмотки.

Применяют PTC — резисторы в схемах запуска люминесцентных ламп.

В этой схеме при включении лампы позистор имеет малое споротивление и через него протекает ток, при этом разогреваются нити накала в лампе и сам позистор, после нагревания цепь позистора размыкается и лампа включается уже с разогретыми электродами. Эта схема значительно продлевает срок службы энергосберегающих ламп.

Нашли применение данные терморезисторы и как датчики уровня жидкости. Схема контроля основана на разных свойствах жидкости и воздуха — теплоёмкость и теплопередача жидкости значительно превышает эти параметры в воздухе.

Также позисторы применяют в качестве нагревательных элементов — в бытовой технике, автомобильной промышленности. Это как раз те самые разрекламированные керамические нагреватели, которые «не сжигают кислород»

Термопары как измерительные температурные датчики

Термопара представляет наиболее распространенный вид температурных датчиков. Термопара как датчик температуры популярна благодаря нескольким факторам:

  • несложному устройству,
  • простоте использования,
  • скорости реакции,
  • малогабаритным размерам.

Термопары обладают непревзойденно широким температурным диапазоном среди всех существующих температурных датчиков (от -200ºC до 2000ºC). Этот вид термоэлектрических датчиков традиционно строится на соединении двух разнородных металлов — меди и константана, которые свариваются или сжимаются в единый спай.

Принцип действия термопары: J1 – горячий спай; J2 – холодный спай; 1 – металл железо; 2 – металл константан; 3 – поток тепла; V1, V2 – разница напряжений; Vвых – напряжение выхода

Одна часть соединения называется эталонным (холодным) спаем. Другая часть — измерительным (горячим) спаем. Когда оба контакта находятся под разными температурами, на стыке используется напряжение, которое используется для измерения температурного датчика, как показано ниже.

Принцип работы датчика температуры — термопары

Принцип работы термопары прост. Слияние двух разнородных металлов образует «термоэлектрический» эффект, который дает постоянную разность потенциалов всего в несколько милливольт (мВ).

Разность напряжений между двумя переходами называется «эффектом Зеебека». Поскольку градиент температуры генерируется вдоль проводящих контактов, создающих ЭДС, выходное напряжение термопары становится зависимым от изменений окружающей среды.

Если оба контакта находятся при одинаковой окружающей среде, разность потенциалов на двух переходах равна нулю. Другими словами, напряжение отсутствует, когда V1 = V2. Однако если соединения подключены внутри схемы и находятся под разными температурами, ситуация меняется.

Появляется выход напряжения относительно разницы значений между двумя переходами V1 — V2. Это различие в напряжении будет увеличиваться с температурой до тех пор, пока не будет достигнут пиковый уровень напряжения перехода. Этот момент будет определяться характеристиками двух разных разнородных металлов.

Конструкция одного из вариантов датчика на термопаре: 1 – спай; 2 – специальная проводка типа «J»; 3 – оболочка их нержавеющей стали; 4 – настраиваемый уплотнительный фитинг; 5 – армирование из нержавеющей стали

Термопары изготавливаются из различных материалов, что позволяет измерять экстремальные температуры в диапазоне от -200°С до + 2000°С. Благодаря такому большому выбору материалов и диапазону измерений, были разработаны международно-признанные стандарты в комплекте с цветовыми кодами термопары.

Цветовые коды позволят пользователю выбрать правильный датчик температуры на базе термопары для конкретного применения. Ниже в качестве примера приведена таблица — британский цветовой код стандартных термопар:

Код Проводники + / — Рабочий диапазон, °C Маркировка цветом
E нихром / константан — 200 … + 900 коричневый
J железо / константан 0 …+ 750 чёрный
K нихром / алюмоникель — 200 … + 1250 красный
N никросил / нисил 0 … + 1250 оранжевый
T медь / константан — 200 … + 350 синий
U Медь / никелин 0 … + 1450 зелёный

Три наиболее распространенных материала термопар, используемые для общего измерения окружающей среды:

  • железо-константан (тип J),
  • медь-константан (тип T),
  • никель-хром (тип K).

Выходное напряжение от термопары очень мало, всего несколько милливольт (мВ) для изменения разности температур на 10°C. Поэтому по причине малого напряжения, на выходе обычно требуется какая-нибудь форма усиления.

Схемы усиления на датчик температуры — термопару

Тип усилителя, дискретного или операционного, необходимо тщательно подбирать, поскольку для предотвращения повторной калибровки термопары с частыми интервалами требуется стабильность дрейфа. Соответственно, предпочтительным видится применение модулятора и усилителя измерительного типа для большинства температурных зондов.

На видеоролике выше демонстрируется работа термопары, которой наделён системный датчик температуры чиллера. Также в рамках видео отмечается, как проверить работоспособность прибора и восстановить прибор в случае утери рабочего сопротивления.

  • полупроводниковые контактные датчики,
  • инфракрасные датчики,
  • датчики теплового излучения,
  • термометры медицинского назначения,
  • индикаторы цветных чернил или красителей.

Проверка исправности ДТОЖ

Датчик температуры антифриза проверяется двумя основными способами: не снимая с автомобиля либо демонтируя с его посадочного места. Второй метод также разделен на два варианта диагностирования: с применением термометра и без него.

Если датчик не прикипел к резьбе, то его довольно просто снять рожковым ключом подходящим по размеру

Важно перед откручиванием отсоединить разъем контактов. Следующим шагом нужно проверить приходит ли питание от ЭБУ на датчик

Сделать это довольно просто имея универсальный тестер (мультиметр):

  1. отсоедините разъем от датчика;
  2. переведите режим измерения мультиметра на «20 В постоянное напряжение»;
  3. присоедините щупы к контактам клемм приходящим от ЭБУ.

Если мультиметра у вас под рукой нет исправность ЭБУ и проводки до него можно проверить просто сняв разъем с датчик температуры охлаждающей жидкости во время работы двигателя, автоматически включится вентилятор радиатора. Это произойдет потому что блок управления увидит разрыв цепи и перейдет в аварийный режим. Если этого не произошло то либо неисправен ЭБУ либо вентилятор охлаждения.

Проверка не снимая с автомобиля

Самый удобный способ, ведь не нужно проводить демонтаж с последующим монтажом. Проверка выполняется при помощи тестера, путем замера показаний на контактах датчика.

Чтобы обеспечить доступ к контактам, потребуется отсоединить клеммник от датчика. При выполнении работ на горячем двигателе будьте осторожны, ведь можно не только обжечься самому, но и оплавить корпус или щупы мультиметра.

Затем тестер переводится в положение измерения сопротивления и присоединяется к выходным контактам датчика. Стоит заметить, что у холодного двигателя значение показаний будет высоким, у горячего – значительно ниже.

Для общего понимания какие значения выдает датчик при разных температурах, как пример, ниже приведены данные для ВАЗ-2110. Показания других легковых машин сильно отличаться не будут.

Показания датчика в зависимости от изменения температуры

Температура жидкости, °С Сопротивление проводника, Ом Температура жидкости, °С Сопротивление проводника, Ом
5 7 280 45 1 188
10 5 670 50 973
15 4 450 60 667
20 3 520 70 467
25 2 796 80 332
30 2 238 90 241
40 1 459 100 177

Стоит отметить, что датчик ломается крайне редко, чаще встречаются ситуации, когда он выдает неверную информацию. Поэтому следует сравнить показания температуры на приборной панели с данными полученными от датчик температуры охлаждающей жидкости в соответствии с таблицей. Если данные отличаются тогда есть смысл снимать датчик и проводить его дальнейшую диагностику.

Проверка ДТОЖ с термометром

Для такой диагностики, необходимо снять датчик с его посадочного места. Как упоминалось выше, сделать это можно при помощи соответствующего гаечного ключа. Заодно можно почистить сам датчик, с резьбы на патрубке удалить налет и смазать ее, осмотреть контакты на наличие окислений и при необходимости удалить.

Затем набрать воду в электрочайник или в другую емкость, но в таком случае придется воспользоваться кипятильником. Помимо этого для измерения нужно взять мультиметр и перевести его переключатель в положение измерения сопротивления проводника.

Головка датчика опускается в воду, а к его контактам присоединяются щупы тестера. Также в емкость с датчиком помещается и термометр, для удобства измерений желательно электронный, но можно и ртутный.

Затем постепенно повышая температуру жидкости сравнивать показания датчика и электронного термометра в соответствии с таблицей. Для большей точности фиксировать показания лучше через каждые 5 градусов. В итоге Вы получите данные которые можно занести в таблицу. Их впоследствии можно сравнить с информацией предоставленной в технической документации к конкретной модели авто. На крайний случай можно сравнить с таблицей приведенной выше.

При проведении проверки допускаются небольшие отклонения от значений. Небольшие погрешности могут зависеть от разных условий и от самого датчика. Часто даже у датчиков температуры охлаждающей жидкости одной модели есть незначительные различия в показаниях при одинаковых условиях измерения.

Проверка без термометра

Такой метод не сильно отличается от предыдущего, только здесь не применяется термометр и показания снимаются одни раз.

Для проверки датчика его следует погрузить в емкость с водой и довести ее до кипения. Затем присоединить к выходным контактам щупы мультиметра и посмотреть, что он покажет.

Если ДТОЖ полностью исправен, то его сопротивление должно быть 177 Ом. Однако следует учитывать погрешности. К тому же щупы мультиметра тоже имеют свое сопротивление, да и температура воды может быть чуть ниже 100 градусов, а соответственно и сопротивление будет чуть больше.

Конструктивные особенности датчиков температуры

По типу исполнения температурные датчики представлены сегодня в различном исполнении. В первую очередь это зависит от вида датчика и его применения в той или иной области, но чаще всего встречаются двух типов: с кабельным выводом и с коммутационной головкой.

Датчик с кабельным выводом представляет собой чувствительный элемент, выполненный из меди или платины, заключенный в корпус из латуни либо нержавеющей стали и имеющий кабельный вывод определенной длины с ПВХ либо силиконовой изоляцией. Могут быть как погружного, так и накладного типа.

В зависимости от модели сама монтажная часть имеет разную длину, также могут иметь резьбовое крепление.

Датчики с коммутационной головкой конструктивно выполнены в виде гильзы с накидной гайкой, в которую вставлен чувствительный элемент и коммутационной головки с клеммными выводами.

Головки могут быть как пластиковыми, так и металлического исполнения. Кроме того головки могут быть стандартного или увеличенного исполнения. Увеличенные головки применяются для встраиваемых нормирующих преобразователей, преобразующих значение измеренной температуры в унифицированный выходной сигнал постоянного тока, как правило 4-20мА.

По типу защиты они могут быть обычного исполнения и взрывозащищенного, в этом случае в маркировке  присутствует обозначение Ex — знак соответствия стандартам взрывозащиты.

Также как и термосопротивления, термопары могут быть представлены в виде исполнения с коммутационной головкой и с кабельным выводом.

По исполнению рабочего спая относительно защитного корпуса бывают с изолированным рабочим спаем и неизолированным.

Для удобства монтажа в трубопроводы и быстрой замены датчика в случае необходимости, выпускается специальная арматура в виде бобышек и защитных гильз.

Бобышки ввариваются в трубопровод и в них вставляется защитная гильза, в которую уже в свою очередь вставляется датчик. Вместе с бобышкой в комплекте идет уплотнительная прокладка для обеспечения герметичности.

Назначение

У автомобилей старой комплектации с карбюраторным впрыском топлива, ДТОЖ имеет простую функцию в цепи радиатор-двигатель-индикатор температуры приборной панели. Иными словами, этот датчик просто указывает показания температуры в двигателе. На работу систем впрыска он не влияет.

Современные автомобили с инжекторным впрыском топлива оснащены элементом ДТОЖ, который осуществляет контроль температурных показателей самого антифриза. Взяв за основу эти параметры, устройство передает сигнал ЭБУ, который в свою очередь:

  • осуществляет включение дополнительного охлаждающего вентилятора;
  • регулирует впрыск топлива в систему во время прогревания на холостых оборотах;
  • принудительно останавливает работу мотора, если поступили данные о его перегреве.

Многие автомобилисты считают ДТОЖ датчиком замера температуры с блока двигателя. ДТОЖ установлен на корпусе термостата или в нижней части радиатора, все зависит от марки и модели автомобиля. У этих устройств есть главное отличие.

ДТОЖ имеет электрический 2 контактный разъем, а на ДТБД всего 1 контакт. ДТБД установлен прямо на блок двигателя для фиксации его температуры. Два похожих узла, но с разной функциональностью по отношению к ЭБУ.

Более сложные автомобили оснащаются сразу 2 термодатчиками. Один располагается до двигателя, поверх корпуса термостата, на патрубке термостата или радиаторе. Второй датчик установлен в месте вывода жидкости с двигателя. Часто это верхняя часть радиатора или патрубок.

Если датчик температуры охлаждающей жидкости неисправен

Сломанный датчик ТОЖ не позволит включать вентилятор, охлаждающий радиатор. А не включенный вентилятор приведет к резкому нагреву двигателя. Обычно в таких случаях водитель не сразу замечает такую поломку, а некоторые и вовсе не заметят, пока из под капота не пойдет пар.

Мало кто делает проверку датчиков, хотя бы изредка. Но, для желающих проверить датчики своих автомобилей, потребуется всего лишь мультиметр и цифровой градусник. Для проверки работоспособности, надо демонтировать этот датчик. Взять небольшую емкость и налить туда кипящую воду температурой 100 градусов и отпустить датчик в эту воду так, чтобы можно было замерить сопротивление. Сопротивление исправного нагретого датчика должно показывать 170 Ом. Если положить в воду температурой 50 градусов, то сопротивление должно быть 970 Ом. А, если в воду 20 градусов, то будет 3500 Ом. Если есть значительные отличия, то датчик неисправен частично, его требуется поменять.

Устройство и принцип действия

Независимо от варианта конструктивного исполнения, устройство терморегулятора   выполняется по одной общей схеме и состоит из 3-х главных модулей или блоков:

  • Первичный датчик температуры, оборудованный термочувствительным элементом;
  • настроечный модуль;
  • модуль управления.

Первичный датчик определяет температуру нагрева контролируемой среды: воздуха или воды. При изменении температуры внутри измерительного датчика происходит изменение физических параметров первичного элемента, которые передаются на управляющий блок.

После получения сигнала, блок управления обрабатывает и передает его на исполнительный механизм, который соответственно отрегулирует объем энергоносителя для нагрева среды.

В качестве исполнительных механизмов в отопительных системах применяются:

  • электромагнитные реле;
  • клапан механического или электрического принципа срабатывания;
  • цифровой/аналоговый прибор, для последующей обработки сигнала.

ТР способен соблюдать определенное значение температуры либо установленный диапазон. На этот показатель влияет гистерезис первичного датчика.

В торговой сети сегодня существует довольно много моделей терморегуляторов, которые могут быть оснащены дополнительными функциями, например, запуск отопления по таймеру и программирование устройства по заданному графику. Но в основе работы всех этих приборов находится вышеназванный принцип действия.

Наладка и эксплуатация

Наладку простейших механических и электромеханических ТР можно выполнить самостоятельно, для этого нужно внимательно изучить инструкцию завода-изготовителя.

Цифровые ТР устанавливаются на дорогостоящем климатическом оборудовании, которое, как правило, комплектуются заводом-изготовителем. В этом случае самостоятельная наладка его не допускается. Первый запуск регулятора производится в ходе настройки котла, которую выполняют сертифицированные организации, аттестованные на проведение этих работ заводом изготовителем. От выполнения этого правила будет зависеть сохранение гарантийных обязательств.

В процессе первого пуска оборудования наладочная организация проверяет работоспособность терморегулятора, настраивает его на работу и поясняет, обслуживающему персоналу, что такое терморегулятор, как он должен  обслуживаться  и порядок установки текущих настроек работы климатической техники.

В процессе эксплуатации ТР должен находится в чистом состоянии, не должен подвергаться воздействию воды и других агрессивных жидкостей, его нужно беречь от механических повреждений и не располагать под прямыми солнечными лучами. Запрещается самостоятельно разбирать ТР и менять его электронные схемы.

При выполнении таких простых условий, терморегулятор будет работать весь нормативный срок эксплуатации, качественно выполняя свои функции по управлению тепловыми процессами.

Современная   климатическая техника в обязательном порядке должна комплектоваться терморегуляторами. Это требование вызвано необходимостью обеспечения энергоэффективности систем отопления. Даже применение простейших механических ТР позволяет экономить от 10 до 30 % топлива в течение отопительного сезона.

Применение цифровых терморегуляторов позволяет создать комфорт в доме, снижает ежемесячные затраты на электроэнергию, повышает эффективность работы климатического оборудования и его КПД, упрощает процессы управления. Все это приводит к снижению общих вредных выбросов в окружающую среду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector