Параметры термисторов

Термистор

Как следует из названия, термистор (т.е., терморезистор) представляет собой датчик температуры, сопротивление которого зависит от температуры.

Термисторы выпускаются двух типов: PTC (с положительным температурным коэффициентом) и NTC (с отрицательным температурным коэффициентом). Сопротивление PTC термистора с ростом температуры увеличивается. А сопротивление NTC термистора, наоборот, с увеличением температуры уменьшается, и этот тип, по-видимому, является наиболее часто используемым типом термисторов. Смотрите рисунок 1 ниже.

Рисунок 1 – Условные графические обозначения термисторов PTC и NTC

Важно понимать, что связь между сопротивлением термистора и его температурой очень нелинейна. Смотрите рисунок 2 ниже

Рисунок 2 – Зависимость сопротивления NTC термистора от температуры

Стандартная формула сопротивления NTC термистора в зависимости от температуры определяется следующим образом:

\[R_T=R_{25C}\cdot e^{\left\{\beta\left[\left(1/\left(T+273\right)\right)-\left(1/298\right)\right]\right\}}\]

где

  • R25C – номинальное сопротивление термистора при комнатной температуре (25°C). Данное значение, как правило, приводится в техническом описании;
  • β (бета) – постоянная материала термистора в Кельвинах. Это значение обычно указывается в техническом описании;
  • T – реальная температура термистора в Цельсиях.

Тем не менее, существует два простых метода, используемых для линеаризации поведения термистора, а именно режим сопротивления и режим напряжения.

Режим линеаризации сопротивления

В режиме линеаризации сопротивления параллельно термистору помещается обычный резистор. Если значение резистора равно сопротивлению термистора при комнатной температуре, область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 3 ниже.

Рисунок 3 – Режим линеаризации сопротивления

Режим линеаризации напряжения

В режиме линеаризации напряжения термистор ставится последовательно с обычным резистором, образуя при этом делитель напряжения. Этот делитель напряжения должен быть подключен к известному, фиксированному, стабилизированному источнику опорного напряжения VREF.

Эта конфигурация приводите к созданию выходного напряжения, которое относительно линейно зависит от температуры. И, как и в режиме линеаризации температуры, если сопротивление резистора равно сопротивлению термистора при комнатной температуре, то область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 4 ниже.

Рисунок 4 – Режим линеаризации напряжения

Зависимость сопротивления и температуры

Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой

R(T) = A exp(b/T)

где A, b – постоянные, зависящие от свойств материала и геометрических размеров.

Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта

Будет интересно Как прочитать обозначение (маркировку) резисторов

1/T = a+b(lnR)+c(lnR)3

где T – температура в К;

R – сопротивление в Ом;

a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.

Стеклянный термистор.

Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:

  • a = 1,03 10-3
  • b = 2,93 10-4
  • c = 1,57 10-7

Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.

Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.

В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:

1/T = a+b(lnR)+c(lnR)2 + d(lnR)3

Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.

Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток

При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК)

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

  1. Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
  2. Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.

Устройство термистора.

Терморезистор

Ключевым компонентом нашей схемы является терморезистор, который используется для определения температуры. Термистор представляет собой резистор, сопротивление которого изменяется в зависимости от температуры. Существует два типа подобных термисторов: NTC (Negative Temperature Co-efficient — с отрицательным температурным коэффициентом) и PTC (Positive Temperature Co-efficient — с положительным температурным коэффициентом). Мы в нашем проекте будем использовать терморезистор NTC типа – его сопротивление уменьшается с повышением температуры. На следующих рисунках приведены график зависимости сопротивления подобного терморезистора от температуры и его типовой внешний вид.

Расчет температуры с помощью терморезистора

Схема используемого нами делителя напряжения представлена на следующем рисунке.

Напряжение на терморезисторе в этой схеме можно определить из известного напряжения:

Vout=(Vin*Rt)/(R+Rt).

Из этой формулы можно выразить значение сопротивления терморезистора Rt (R – известное сопротивление 10 кОм):

Rt=R(Vin/Vout)-1.

Значение Vout мы затем будем определять в коде программы с помощью считывания значения на выходе АЦП на контакте A0 платы Arduino.

Математически, сопротивление терморезистора можно вычислить с помощью известного уравнения Стейнхарта-Харта (Stein-Hart equation).

T = 1/(A + B*ln(Rt) + C*ln(Rt)3).

В этой формуле A, B и C — константы, Rt – сопротивление терморезистора, ln — натуральный логарифм.

Мы для проекта использовали терморезистор со следующими константами: A = 1.009249522×10−3, B = 2.378405444×10−4, C = 2.019202697×10−7. Эти константы можно определить с помощью данного калькулятора, введя в нем значения сопротивления терморезистора при трех значениях температуры или вы их можете непосредственно узнать из даташита на ваш терморезистор.

Таким образом, для определения значения температуры нам будет нужно только значение сопротивления терморезистора – после его определения мы просто подставляем его значение в уравнение Стейнхарта-Харта и с его помощью рассчитываем значением температуры в кельвинах. Алгоритм определения температуры в нашем проекте представлен на следующем рисунке.

Терморезистор

Большинство промышленных сфер требует измерения множества параметров на производстве. Чем сложнее технологические процессы, тем точнее должны быть показания. Один из самых требовательных к точности параметров – температура. Для ее точных замеров используют специальный прибор – терморезистор.

Простой принцип работы позволяет создавать термопреобразователи сопротивления (научное название устройства) различных габаритов и форм. В зависимости от области применения и материала, датчики могут иметь различную форму и соответствующий тип: стержневой, трубчатый, дисковой или бусинковый. Особых ограничений нет, поэтому на каждой отрасли существуют свои стандарты датчиков.

Устройство термодатчиков и терморезисторов NTC

Другие названия — датчики резистивные, термисторы, термические или терморезисторы, датчики НТЦ (NTC) температуры или термометры сопротивления (но именно с NTC термистором, не путать с RTD и изделиями с другими чувствительными частями).

Сенсор NTC состоит из резистивного (чувствительного) сегмента — терморезистора и проводков (ножек) для подачи тока на него.

Термистор изготавливается порошковым способом, запеканием.

Материалы: оксиды, галогениды, халькогениды. Используются полупроводники (часто полимерные), они сами по себе с ТКС «−». Для корпуса, наружного покрытия — керамика, стекло, эпоксидка.

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров

Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Где применяются

Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

Что такое резистор и для чего он нужен?

Что такое триггер, для чего он нужен, их классификация и принцип работы

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Сфера применения

Более дорогой элемент защиты применяется в сложных производственных процессах, как своего рода предохранитель. К примеру, их могут вмонтировать на исполнительное реле, которое при нагреве этой радиодетали отключает всю электрическую цепь.

Также они нужны для:

  1. Защиты электродвигателей. Если заклинит ротор, обмотка будет защищена от перегорания. Датчиком и предохранителем здесь выступает позистор, который подключается к управляющему приборчику, со своим исполняющим реле и со своим пускателем. При опасной ситуации, когда возрастает сопротивление, уходит сигнал на необходимый элемент и уже оттуда проходит исполнительная команда на моментальное отключение мотора.
  2. Для предохранения обмоток трансформаторов от значительных перегрузочных значений и последующего перегрева. Здесь позистору место в электрических цепях первичной обмотки.
  3. Защиты нагревательного узла в клеющих пистолетах.
  4. Как вспомогательный узел для подогрева двигателя перед запуском.

Классификация по уровням температур:

  • низкотемпературные (менее 175 К);
  • среднетемпературные (175–515 К);
  • высокотемпературные (свыше 515 К);
  • отдельный тип: 900…1300° К.

Устройство болометра

Принцип действия болометра основан на изменении электрического сопротивления термочувствительного элемента вследствие нагревания под воздействием поглощаемого потока электромагнитной энергии.

Болометр-паутина для измерения космического микроволнового фонового излучения . Изображение предоставлено NASA / JPL-Caltech .

Основной компонент болометра — очень тонкая пластинка (например, из платины или другого проводящего материала), зачерненная для лучшего поглощения излучения. Из-за своей малой толщины пластинка под действием излучения быстро нагревается и ее сопротивление повышается. Для измерения малых отклонений сопротивления пластинки ее включают в мостовую схему, которую балансируют при отсутствии засветки. Металлические болометры часто подсоединяют через трансформаторный вход, так как у них очень малое собственное сопротивление.

Концептуальная схема болометра . Мощность, Р , из падающего сигнала поглощается и нагревает тепловой массы с теплоемкостью , С , и температуры, T . Термическая масса соединена с резервуаром постоянной температуры через связь с теплопроводностью , G . Повышение температуры Δ Т = Р / С , и измеряют с помощью резистивного термометра, что позволяет определить P . Внутренняя тепловая постоянная времени τ = C / G

Первый полупроводниковый болометр был создан компанией Bell в годы Второй мировой войны. Отличался простотой, надежностью и высокой чувствительностью. Был использован в ИК-спектроскопии и теплопеленгации.

Первые терморезистивные болометры успешно работали на искусственных спутниках Земли, но позже были вытеснены пироэлектрическими приемниками.

В качестве материалов для металлических болометров используют платину, никель, , для полупроводниковых — сплавы окислов никеля, кобальта, марганца.

Полупроводниковый болометр состоит из двух пленочных (толщиной до 10 мкм) термисторов. Один из термисторов, непосредственно подвергающийся облучению, является активным. Второй — компенсационный. Он экранирован от внешнего излучения и предназначен для компенсации изменений температуры окружающей среды. Оба термистора помещаются в общий герметичный корпус.

болометра улучшается с понижением температуры чувствительного элемента. В астрономии обычно используются болометры, охлаждаемые до температуры жидкого гелия.

Основные параметры болометров:

  • сопротивление активного термистора при номинальной температуре;
  • рабочее напряжение;
  • чувствительность при определенной частоте модуляции светового потока;
  • порог чувствительности;
  • постоянная времени;
  • уровень собственных шумов — у металлических преобладает тепловой шум, у полупроводниковых — токовый.

Температурные детекторы NTC и PTC

Есть два типа термисторов: отличается направление зависимости R от температуры, механизм ТКС. Слово перед сокращением фразы «Temperature Coefficient» отображает данный нюанс:

  • Negative. NTC, рассматриваемые нами. С отрицательным t° коэфф. С ростом температуры падает сопр.;
  • Positive, PTC. Второе название позисторы. С положительным t° коэфф. R увеличивается.

Для NTC терморезисторов используют смеси многокристаллических оксидов переходных металлов (MnO, СoOx, NiO и CuO), полупроводников определенных типов (A, B), и стеклоподобных (Ge и Si). А PTC (позисторы) состоят из твердых веществ, основанных на BaTiO₃, данный сплав имеет именно позитивную реакцию (ТКС). Но отличия в работе в основном лишь в направлении зависимости R/T.

Наиболее популярные температурные детекторы NTC среднего диапазона: ТКС −2.4…-8.4 %/К, с широкими границами сопр. (1…106 Ом). Если говорить о PTC, то эти цифры 0.5…0.7 %/К, часто они из кремния, их сопротивление, в отличие от NTC, приближается к линейному.

PTC используются на оборудовании охлаждения, температурной стабилизации в радиоэлектронных схемах, как саморегулирующиеся нагревательные детали. Их R увеличивается по мере роста их же нагрева (PTC нагреватели), такая запчасть никогда не перегреется, всегда выдает устойчивые тепломощности при значительном диапазоне напряжений.

Сферы чрезвычайно схожие, а принцип в основе аналогичный — все зависит от того, что требуется, негативный или положительный ТКС:

  • NTC следит за понижением температуры;
  • PTC — за повышением.

Принцип действия термометра сопротивления

Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.

Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.

Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.

Мостовая схема термометра сопротивления с батареей

Мостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.

В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.

Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.

Протекание тока через уравновешенный мост

Мостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.

Мостовая схема с термометром сопротивления

Ток, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.

Мостовая схема с термометром сопротивления и измерительным прибором

Когда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.

Схема подключений

Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:

  • 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
  • 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
  • 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.

Металлический термометр сопротивления

Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.

Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.

В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.

Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).

Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector