Давление в жидкостях и газах. закон паскаля

Парадокс гидростатического характера и связь с законом Паскаля

Гидростатическое давление и его свойства могут изменяться, что связано с попытками произведения вычислений силы д-ния в определенных обстоятельствах. Сложнее производить вычисления, если необходимо узнать силу давления, оказываемую на негоризонтальные стены сосуда. Причиной давления здесь выступает вес жидкостного столба с бесконечно малой частицей в основании, которая рассматривается на поверхности. Высота выступает вертикальным расстоянием всех таких частиц от свободной жидкостной поверхности. Эти расстояния не будут постоянными для боковых стен. Здесь необходимо использовать, при суммировании боковых стенок, правила интегральных исчислений, давления упирающегося на любые элементы, находящиеся в горизонтальном положении. С учетом всего вышесказанного получаем правило, при котором давление тяжелых жидкостей на любую плоскую стену соответствует весу жидкостного столба, имеющего в качестве основания площадь данной стены, а высота является вертикальным расстоянием ее центра тяжести, удаленного от жидкостной поверхности свободного типа. Из этого следует, что давление на дно сосуда зависит лишь от размера его поверхности, высоты жидкостного уровня, налитого в сам сосуд, и от показателя плотности, а вот форма сосуда не влияет на давление. Такое явление называют гидростатическим парадоксом.

Этот парадокс был доказан Паскалем в опытах с сосудами, расширяющимися кверху и книзу. В первом сосуде избыточный вес жидкостей поддерживали боковые стены, и передавался он при помощи стен, не действуя при этом на дно. А во втором сосуде давление действовало на боковые стены по направлению от низа к верху, и, как результат, облегчало вес на величину, равную недостатку жидкости.

Общее представление о гидростатическом давлении

Гидростатическое давление – это сила давления водного столба над определенным, условно обозначенным уровнем. Полная удобная подвижность частиц капель жидкости или газа позволяет, находясь в состоянии покоя, передать равносильно давление по всем направлениям. Таким образом, давление воздействует на любую часть плоскостей, что ограничивают жидкость, при использовании силы P, которая по своей характеристике пропорциональна размеру данной поверхности либо направлена по нормали в ее сторону. Гидростатическим давлением называют отношение между Pw, иначе говоря, это давление, создаваемое р на поверхности, равной единице.

В итоге мы получаем довольно легкое уравнение P = pw, которое позволяет точно вычислять давление на конкретную поверхность чего-либо, например сосуда, газа или жидкостных капель, что находятся в условиях, создающих очень малое давление в сравнении с тем, что передается снаружи. К этому аспекту явлений можно отнести практически любые случаи газового давления и расчетов давления воды, находящейся в гидравлическом прессе или аккумуляторе.

Блез Паскаль открыл и описал это жидкостное свойство в 1653-м, однако Симон Стевин знал и использовал это понятие немного раньше.

Изменение температуры газа по длине газопровода

При стационарном движении газа массовый
расход в газопроводе составляет

. (2.41)

Фактически движение газа в газопроводе
всегда является неизотермическим. В
процессе компримирования газ нагревается.
Даже после его охлаждения на КС температура
поступающего в трубопровод газа
составляет порядка 2040С,
что существенно выше температуры
окружающей среды (T).
Практически температура газа становится
близкой к температуре окружающей среды
лишь у газопроводов малого диаметра
(Dу0.
Кроме того следует учесть, что
транспортируемый по трубопроводу газ
является реальным газом, которому присущ
эффект Джоуля-Томпсона, учитывающий
поглощение тепла при расширении газа.

При изменении температуры по длине
газопровода движение газа описывается
системой уравнений:

удельной энергии ,

неразрывности ,

состояния ,

теплового баланса .

Рассмотрим в первом приближении уравнение
теплового баланса без учета эффекта
Джоуля-Томпсона. Интегрируя уравнение
теплового баланса

,

получим

, (2.42)

где ;

KСР– средний на участке полный
коэффициент теплопередачи от газа в
окружающую среду;

G– массовый расход газа;

cP
средняя изобарная теплоемкость газа.

Величина atLназывается безразмерным критерием
Шухова

(2.43)

Таким образом, температура газа в конце
газопровода составит

. (2.44)

На удалении xот начала
газопровода температура газа определяется
по формуле

. (2.45)

Изменение температуры по длине газопровода
имеет экспоненциальный характер (рис.
2.6).

Рассмотрим
влияние изменения температуры газа на
производительность газопровода.

Умножив обе части уравнения удельной
энергии на 2и выразив,
получим

. (2.46)

Выразим плотность газа в левой части
выражения (2.46) из уравнения состояния,
произведениеwиз уравнения неразрывности

С учетом этого уравнение удельной
энергии принимает вид

(2.47)

или

. (2.48)

Обозначиви интегрируя левую часть уравнения
(2.48) отPНдоPК, а правую отTНдоTК, получим

. (2.49)

Произведя замену

, (2.50)

имеем

. (2.51)

Произведя интегрирование в указанных
пределах, получим

. (2.52)

С учетом (2.42)

или

, (2.53)

где – поправочный коэффициент, учитывающий
изменение температуры по длине газопровода
(неизотермичность газового потока).

С учетом (2.53) зависимость для определения
массового расхода газа примет вид

. (2.54)

Значение Нвсегда больше единицы, следовательно,
массовый расход газа при изменении
температуры по длине газопровода
(неизотермическом режиме течения) всегда
меньше, чем при изотермическом режиме
(T=idem). Произведение TНназывается среднеинтегральной
температурой газа в газопроводе.

При значениях числа Шухова Шу4
течение газа в трубопроводе можно
считать практически изотермическим
при T=idem. Такой температурный
режим возможен при перекачке газа с
небольшими расходами по газопроводам
малого (менее 500 мм) диаметра на значительное
расстояние.

Влияние изменения температуры газа
проявляется при значениях числа Шухова
Шу

При
перекачке газа наличие дроссельного
эффекта приводит к более глубокому
охлаждению газа, чем только при теплообмене
с грунтом. В этом случае температура
газа может даже опуститься ниже
температурыT(рис.
2.7).

Рис. 2.7. Влияние эффекта Джоуля-Томпсона
на распределение температуры газа по
длине газопровода

1 – без учета Di; 2 – с
учетомDi

Тогда с учетом коэффициента Джоуля-Томпсона
закон изменения температуры по длине
принимает вид

, (2.55)

Гидростатическое давление

Гидростатическое давление — это
внутренняя сжимающая сила, обусловленная
действием внешних сил, приложенная в
данной точке жидкости. Такое давление
по всем направлениям одинаково и зависит
от положения точки в покоящейся жидкости.

Размерность гидростатического давления
в системе МКГСС—кг/см2или т/м2,
в системе СИ — Н/м2.

Основные соотношения единиц измерения
давления:

кг/см2

Н/м2

Техническая атмосфера

1

98066,5

Миллиметр водяного столба

0,0001

9,80665

Миллиметр ртутного столба

0,00136

133,32

При практических расчетах 1 техническая
атмосфера = 1 кг/см2= 10 м вод. ст. =
735 мм рт. ст. = 98070 Н/м2.

Для несжимаемой жидкости, находящейся
в равновесии под дей­ствием силы
тяжести, полное гидростатическое
давление в точке:

p=p+

где р— давление на свободной
поверхности жидкости;

поперечного сечения, равной единице;

h— глубина погружения
точки;

Для некоторых жидкостей значения
удельного веса, используемые при решении
задач, приведены в приложении (табл.
П-3).

Величина превышения давления над
атмосферным (pa)
называется манометрическим, или
избыточным, давлением:

Если давление на свободной поверхности
равно атмосферному, то избыточное
давление рм=

Недостающая до атмосферного давления
величина называется
ва­куумом:

рвак= ра– р.

Решение большинства задач данного
раздела связано с использова­нием
основного уравнения гидростатики

где z— координата или
отметка точки.

Чему в среднем равна гидростатика H2O?

Молекулярные частицы, собранные в некотором объеме, подвержены воздействию силы сжатия. Разные молекулы испытывают разное ГДВ. Это зависит от конкретного местоположения частиц в водном объеме. На поверхности сжатие меньше, на глубине, больше.

Вычислить значение ГДВ можно по формуле: P = pgh,

где:

  • p – плотность воды (зависит от температуры, в округленном значении – 1 г/мл);
  • g – значение ускорения свободного падения (9,8 м/сек²);
  • h – глубина, где будет определяться давление.

Чтобы узнать среднее значение ГДВ для заданного объема, следует воспользоваться формулой:

Pср = P/S, где:

  • P – гидростатическое давление, действующее на дно резервуара с водой;
  • S – площадь дна емкости.

Несколько слов о кавитационном режиме насосов

При достижении определенных условий в насосах может возникать кавитация— явление, которое создается при снижении гидростатического давления и характеризуется появлением пузырьков газа в движущейся жидкости. В зоне, где гидростатическое давление повышается, пузырьки схлопываются.

В случае с лопастными насосами кавитацию чаще всего можно наблюдать в зоне потока максимальной скорости — вблизи входной кромки на лопатке рабочего колеса. Там, где пузырек схлопывается, резко увеличивается давление — если в момент схлопывания пузырек пара находится на поверхности лопатки или рабочего колеса, то удар воздействует на эту поверхность, что рано или поздно приведет к эрозии металла. Разрушение рабочих элементов лопастных насосов — самое опасное следствие кавитации. Кроме того, кавитация вызывает резкий шум техники, треск, вибрацию, может сопровождаться падением мощности, напора, подачи и КПД.

Сегодня не существует материалов, которые имели бы абсолютную устойчивость к кавитационным разрушениям, поэтому нельзя допускать работу насосов в кавитационном режиме. Основное средство по предупреждению кавитации — регулирование давления во всасывающем трубопроводе. Оптимальные параметры определяются высотой всасывания жидкости во время функционирования насоса.

Чтобы определить критический кавитационный запас, при производстве насоса проводят кавитационные испытания. В результате каждый режим работы насосного оборудования получает кавитационную характеристику, определяемую зависимостью мощности и напора насоса от кавитационного запаса.

Как исследуют моря и океаны

При изучении используются батискафы и батисферы. Батисфера — это стальной шар с пустотой внутри, который выдерживает очень высокое давление морских глубин. В стенку батисферы ставится иллюминатор — герметичное отверстие, закрытое прочными стеклами. Батисферу с исследователем опускают с корабля на стальном тросе до того слоя воды, который не может осветить прожектор. Благодаря этому приспособлению удавалось спуститься до 1 км. Батискафы с батисферой (укрепленной внизу большой цистерной из стали), которая заполнена бензином, может достигнуть еще большего погружения.

Поскольку плотность бензина меньше воды, подобная конструкция может перемещаться в море, словно дирижабль в воздухе. Вместо легкого газа используется бензин. При этом батискаф снабжен запасом балласта и двигателем, благодаря которому он, в отличии от батисферы, может перемещаться самостоятельно, не требуя связи с кораблем на поверхности.

Как определить?

Узнать ГДВ в требуемой точке возможно с помощью уравнения, которое называется: основное уравнение гидростатики. Выражено оно в виде:

 P = P0 + yh,

где:

  • P0 – давление на внешней поверхности жидкости (атмосферное);
  • y – удельный вес воды;
  • h – высота водного столба (глубина).

Показательно, что ГДВ в заданной точке будет равно величине, состоящей из суммы значений: вес атмосферного столба и вес водного слоя. Наименование у этого параметра – полное давление.

Если на водную поверхность давит сила, которая больше атмосферной нагрузки, то такой вид воздействия будет именоваться, как избыточное давление. Он выражается разностью между полным и атмосферным давлением:

 Pизб = Pполн — Pатм

Пояснительным примером может послужить компрессор холодильника, который создает избыточное сжатие  газа в герметичной камере.

Скорость течения жидкости равна

где q > расчетный расход жидкости, м3/с;

– площадь живого сечения трубы, м2.

Коэффициент сопротивления трения λ определяется в соответствии с регламентами свода правил СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования»:

где b – некоторое число подобия режимов течения жидкости; при b > 2 принимается b = 2.

где Re – фактическое число Рейнольдса.

где ν – коэффициент кинематической вязкости жидкости, м²/с. При расчетах холодных водопроводов принимается равным 1,31 · 10-6 м²/с – вязкость воды при температуре +10 °С;

Reкв >- число Рейнольдса, соответствующее началу квадратичной области гидравлических сопротивлений.

где Кэ – гидравлическая шероховатость материала труб, м. Для труб из полимерных материалов принимается Кэ = 0,00002 м, если производитель труб не дает других значений шероховатости.

В тех случаях течения, когда Re ≥ Reкв, расчетное значение параметра b становится равным 2, и формула ( 4 ) существенно упрощается, обращаясь в известную формулу Прандтля:

При Кэ = 0,00002 м квадратичная область сопротивлений наступает при скорости течения воды (ν= 1,31 · 10-6 м²/с), равной 32,75 м/с, что практически недостижимо в коммунальных водопроводах.

Для повседневных расчетов рекомендуются номограммы, а для более точных расчетов – «Таблицы для гидравлических расчетов трубопроводов из полимерных материалов», том 1 «Напорные трубопроводы» (А.Я. Добромыслов, М., изд>во ВНИИМП, 2004 г.).

При расчетах по номограммам результат достигается одним наложением линейки – следует прямой линией соединить точку со значением расчетного диаметра на шкале dр с точкой со значением расчетного расхода на шкале q (л/с), продолжить эту прямую линию до пересечения со шкалами скорости V и удельных потерь напора 1000 i (мм/м). Точки пересечения прямой линии с этими шкалами дают значение V и 1000 i.

Как известно, затраты электроэнергии на перекачку жидкости находятся в прямой пропорциональной зависимости от величины Н (при прочих равных условиях). Подставив выражение ( 3 ) в формулу ( 2 ), нетрудно увидеть, что величина i (а, следовательно и Н) обратнопропорциональна расчетному диаметру dр в пятой степени.

Выше показано, что величина dр зависит от толщины стенки трубы e: чем тоньше стенка, тем выше dр и тем, соответственно, меньше потери напора на трение и затраты электроэнергии.

Если в дальнейшем по каким-либо причинам меняется значение MRS трубы, ее диаметр и толщина стенки (SDR) должны быть пересчитаны.

Следует иметь в виду, что в целом ряде случаев применение труб с MRS 10 взамен труб с MRS 8, тем более труб с MRS 6,3 позволяет на один размер уменьшить диаметр трубопровода. Поэтому в наше время применение полиэтилена РЕ 80 (MRS 8) и PE 100 (MRS 10) взамен полиэтилена РЕ 63 (MRS 6,3) для изготовления труб позволяет не только уменьшить толщину стенки труб, их массу и материалоемкость, но и снизить затраты электроэнергии на перекачку жидкости (при прочих равных условиях).

В последние годы (после 2013) трубы изготовленные из полиэтилена ПЭ80 практически полностью вытеснены из производства трубами изготовленные из полиэтилена марки ПЭ100. Объясняется это тем, что сырье из которого производятся трубы поставляется из-за границы маркой ПЭ100. А еще тем, что полиэтилен 100 марки имеет более прочностные характеристики, благодаря чему, трубы выпускаются с теми же характеристиками, что трубы из ПЭ80, но с более тонкой стенкой, за счет чего увеличивается пропускная способность полиэтиленовых трубопроводов.

Номограмма для определения потерь напора в трубах диаметрами 6 , 100 мм.

Номограмма для определения потерь напора в трубах диаметрами 100 , 1200 мм.

Современные средства

Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:

  • падения напора на погонный метр трубопровода;
  • длины участка;
  • внутреннего диаметра трубы;
  • вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
  • способа расчёта сопротивления.

Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:

  • цементно-песчаное, нанесённое различными методами;
  • внешнее полимерцементное или пластиковое;
  • новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.

Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(0 голосов, среднее: 0 из 5)

Механика сплошной среды

Гидростатическая ось в системе координат Хайт-Вестергаарда — это умноженное на среднее напряжение в 3D :3{\ displaystyle {\ sqrt {3}}}ξзнак равно-3п{\ displaystyle \ xi = — {\ sqrt {3}} \, p}

В каждой точке (будь то в жидкости, твердом теле или в вакууме) существует

σзнак равно(σ11σ12-еσ13-еσ21 годσ22-еσ23σ31 годσ32σ33),{\ displaystyle {\ boldsymbol {\ sigma}} = {\ begin {pmatrix} \ sigma _ {11} & \ sigma _ {12} & \ sigma _ {13} \\\ sigma _ {21} & \ sigma _ {22} & \ sigma _ {23} \\\ sigma _ {31} & \ sigma _ {32} & \ sigma _ {33} \ end {pmatrix}} \ ,,}

он состоит из гидростатической части

σЧАСуdрОзнак равно-пЯ.знак равно(-п-п-п),{\ displaystyle {\ boldsymbol {\ sigma}} _ {\ mathrm {hydro}} = — p \, {\ boldsymbol {I}} = {\ begin {pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \ end {pmatrix}} \ ,,}

с гидростатическим давлением
и девиаторной частью
.
пзнак равноσ11+σ22-е+σ333{\ displaystyle p = {\ frac {\ sigma _ {11} + \ sigma _ {22} + \ sigma _ {33}} {3}}}σdеvзнак равноσ-σЧАСуdрО{\ displaystyle {\ boldsymbol {\ sigma}} _ {\ mathrm {dev}} = {\ boldsymbol {\ sigma}} — {\ boldsymbol {\ sigma}} _ {\ mathrm {hydro}}}

В случае изотропных (= независимых от направления) материалов площадь разрушения обычно указывается как функция гидростатической и девиаторной составляющих (например, напряжения Мизеса или критерия разрушения Друкера-Праги ); система координат Хайт-Вестергарда — это часто используется для этого , где гидростатическая ось представляет собой линию, а отклоняющаяся плоскость охватывает трехмерное пространство основных напряжений ортонально к ней.

Свойства

В каждой статичной жидкой среде всегда присутствует напряжение сжатия. К примеру, вода, размещенная в условном баке, станет давить на его стенки и дно. А если погрузить в воду какой-либо предмет, то можно с уверенностью сказать, что этот предмет окажется под воздействием силовой нагрузки.

К основным свойствам гидростатического давления относят три закономерности:

  1. ГДВ всегда направлено перпендикулярно той площадке, на которую оно оказывает действие. Стенки емкостей бывают вертикальными, бывают наклонными. На направление действия силы это совершенно не влияет. Давление внутри емкости все равно будет направлено под углом 90° к стенкам.
  2. В любой точке жидкости величина ГДВ неизменна по всем направлениям. Свойство №2 объясняется молекулярным строением воды. Частицы в жидкостях довольно свободны, и способны легко перемещаться относительно друг друга. У твердых материалов молекулы собраны в кристаллические решетки, поэтому их форма неизменна.

    Из этого обстоятельства следует, что когда давление распространяется на конкретный объем воды, в котором молекулы не имеют прочных связей, то оно одинаково действует во все стороны. При этом сила этого давления имеет одну и ту же величину.

  3. ГДВ в некоторой точке будет зависеть от ее месторасположения в пространстве. Это свойство очевидно. Вполне понятно, что чем глубже тело опустится в жидкую среду, тем больше окажется показатель ГДВ. И, наоборот, при незначительном погружении, ГДВ будет маленьким.

Давление

Идущий по рыхлому снегу человек будет в него постоянно проваливаться. А вот на лыжах он сможет передвигаться по тому же самому снегу спокойно. Казалось бы, ничего не меняется — человек воздействует на снег с одинаковой силой и на лыжах, и без них.

Дело в том, что «проваливание» в снег характеризуется не только силой — оно также зависит от площади, на которую эта сила воздействует. Площадь поверхности лыжи в 20 раз больше площади поверхности подошвы, поэтому человек, стоя на лыжах, действует на каждый квадратный сантиметр с силой в 20 раз меньшей, чем без них.

Или, например, если вы будете с одинаковой силой втыкать кнопки в пробковую доску, легче войдет та кнопка, у которой более заостренный конец, так как его площадь меньше.

Резюмируем: результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади поверхности, к которой эта сила приложена.

А теперь подтвердим этот вывод опытами, как настоящие физики.

Возьмем небольшую доску и вобьем гвозди в ее углы. Также возьмем емкость с песком и поставим конструкцию из доски и гвоздей в эту емкость. Сначала расположим конструкцию шляпками вниз и поставим на нее гирю. Конструкция не утонет в песке, а только чуть-чуть углубится в него.

Затем перевернем конструкцию так, чтобы шляпки гвоздей оказались сверху и также поставим на доску гирю. Теперь конструкция утонет в песке.

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия силы.

Во всех примерах мы говорили о действии силы, перпендикулярной поверхности. Чтобы охарактеризовать это действие, используется величина давление.

Давление

p = F/S

p — давление

F — сила

S — площадь

Определение показателя

Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.

  1. Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
  2. Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
  3. Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
  4. Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы. От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.

Напор воды в кране зависит от давления в водопроводной системе

Несжимаемые жидкости в однородном гравитационном поле.

Закон паскаля

Давление увеличивается с глубиной воды. В дополнение к гидростатическому давлению существует еще и давление воздуха на поверхность воды. Необходимо различные масштабы на : давление в водяном столбе повышается намного быстрее, чем в воздушном столбе .


Гидростатическое давление на дно во всех трех емкостях одинаковое, несмотря на разный объем заполнения.

Гидростатическое давление для жидкостей с постоянной плотностью в однородном гравитационном поле (=  несжимаемые жидкости , особенно жидкости ) рассчитывается в соответствии с законом Паскаля (или Паскаля ) (названным в честь Блеза Паскаля ):

п(ЧАС)знак равноρграммЧАС+п{\ displaystyle p (h) = \ rho gh + p_ {0}}

Обозначения формул :

ρ{\ displaystyle \ rho}= Плотность [для воды : ≈ 1000 кг / м³]ρ{\ displaystyle \ rho}
грамм{\ displaystyle g}= Ускорение свободного падения [для Германии: ≈ 9,81 м / с²]грамм{\ displaystyle g}
ЧАС{\ displaystyle h}= Высота уровня жидкости над рассматриваемой точкой
п{\ displaystyle p_ {0}}= Давление воздуха на поверхности жидкости
п(ЧАС){\ displaystyle p (h)} = гидростатическое давление как функция высоты уровня жидкости.

единицы измерения

В физических единицах для гидростатического давления являются:

  • международная единица СИ
    Паскаль (Па): 1 Па = 1 Н / м²;
  • также в Германии и Австрии «юридическая единица»
    Бар (бар): 1 бар = 100 000 Па или Н / м² (= 100  кПа )

Для описания гидростатического давления иногда используется старая единица измерения, не соответствующая системе СИ , метр водяного столба (мВС).

Пример гидростатического парадокса

Толщина воды , однородная температура воды: 3,98 ° C, высота: 50 метров:
1000 кг / м³ × 9,81 м / с² × 50 м ≈ 490 500 Н / м² ≈ 4,90 бар перепад давления в атмосфере

Плотность воды при температуре 20 ° C составляет 998,203 кг / м³. Гидростатическое давление минимально изменяется до

998,203 кг / м³ × 9,81 м / с² × 50 м ≈ 489 618,57 Н / м² ≈ 4,90 бар

Гидростатическое давление не зависит от формы сосуда; критичным для давления является высота жидкости — или уровень жидкости и плотность которого (в зависимости от температуры), а не абсолютное количество жидкости в сосуде. Это явление стало известно как гидростатический парадокс (или парадокс Паскаля ) .

Общее давление (абсолютное давление)

Для полного описания давления в несжимаемой жидкости в состоянии покоя необходимо добавить давление окружающей среды. Например, давление воды, действующее на дайвера, складывается из давления воздуха, действующего на поверхность воды и, таким образом, все еще действующего на дайвера, и разницы гидростатического давления из-за глубины воды.

Сила, действующая на дно сосуда, заполненного водой, создается только перепадом давления, поскольку давление воздуха также действует снизу. Парадокс в этом контексте заключается в том, что сила все равно увеличивается с площадью пола, если уровень заполнения остается прежним.

Это важно для дайверов , чтобы знать , какое давление их тела газы ( азот ) подвергаются для того , чтобы избежать водолазного болезни .

Батискафа должна выдерживать особенно высокое гидростатическое давление.

Водонапорные башни используют гидростатическое давление для создания давления в трубопроводе, необходимого для снабжения конечных пользователей.
В гидрогеологии , согласно закону Дарси, поток между двумя точками может быть установлен только в том случае, если разность давлений отличается от разницы гидростатических давлений в этих двух точках.

Сифон представляет собой устройство или устройство , с помощью которого жидкость может быть передана из контейнера через край контейнера с нижним контейнером или опорожняется в открытом , не наклонив контейнер снова и без отверстия или выпускного отверстия под уровнем жидкости.

Что это такое?

В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.

Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды. Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.

Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.

Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.

Определение гидростатического давления

Определение

Физическая величина, равная отношению нормальной силы ($F$), действующей со стороны жидкости на некоторую площадь,
на величину этой площади ($S$) называют давлением ($p$) жидкости:

\

Если несжимаемая жидкость находится в равновесии давление по горизонтали всегда одно и то же. Свободная поверхность жидкости всегда горизонтальна, за исключением места около стенок сосуда. У несжимаемой жидкости плотность не зависит от давления. Если поперечное сечение цилиндрического столба жидкости равно $S$, высота столба $h$, плотность жидкости $\rho $, тогда вес ($P$) этого столба равен:

В соответствии с (1) давление на основание столба жидкости составит величину:

Формула (3) указывает, что давление столба несжимаемой жидкости на дно сосуда зависит от высоты и плотности жидкости.
В общем случае плотность зависит от температуры жидкости. Давление, которое вычисляется при помощи формулы (3)
называют гидростатическим давлением/

Определение

И так, гидростатическим давлением называют давление столба жидкости, находящейся в состоянии равновесия, над некоторым
условно выбранным уровнем при действии силы тяжести. Гидростатическое давление определяется по формуле (3).

Давление внутри жидкости ($p$) на глубине $h$, будет складываться из давления атмосферы ($p_0$) и гидростатического давления:

Единицей измерения гидростатического давления в Международной системе единиц (СИ) является паскаль (Па):

Заключение

Гидростатическое давление воды – это очень важный показатель. Он позволяет производить не только расчеты при разработке и производстве различных устройств, работающих на основе законов гидростатики.

Его часто задействуют и простые люди, на самом обычном бытовом уровне, даже не подозревая об этом. Например, используя прибор для измерения артериального давления, или включая насос на даче.

Три свойства, которыми обладает гидростатика воды, остаются неизменными при любых обстоятельствах, что полезно помнить. Ведь при необходимости, можно даже самостоятельно произвести какие-либо математические расчеты. Например, вычислить ГДВ на дне моря или океана.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector