Волоконно-оптический кабель: характеристики, сфера применения, плюсы и минусы
Содержание:
- Конструкция волоконно-оптического кабеля
- Недостатки оптоволоконного кабеля
- Принцип работы волоконно-оптического кабеля
- Типы волоконно-оптического кабеля
- Проверка затухания оптическим рефлектометром
- Монтаж
- Оптические характеристики
- Применение
- Принцип работы
- Показатели скорости прохода данных по медной витой паре
- Применение
- По виду оптоволокна
- Виды
- Комплект защиты сварки
- Типы оптоволоконного кабеля
- Сварка оптоволокна и уровень затухания сигнала
- Скалыватель оптических волокон
- Показатели скорости прохода данных оптоволоконному кабелю по одному волокну
Конструкция волоконно-оптического кабеля
Конструкция ВОК изменяется в зависимости от его типа и назначения при общем сходстве отдельных конструктивных элементов. Познакомимся с особенностями кабельной конструкции на примере оптоволоконного кабеля, изображенного на рисунке.
Волоконно-оптический кабель в разрезе
В центре конструкции виден силовой элемент из стеклопластикового прутка, предназначенный для демпфирования нагрузок, создаваемых при монтаже и эксплуатации. Волокна расположены внутри оптических модулей, оберегающих их от внешнего воздействия. Модули представляют собой пластиковые трубки, имеющие оптимальный диаметр для группирования нужного количества ОВ.
В состав ВОК входят один или несколько модулей, что зависит от общего числа волокон. Модульное группирование оптических волокон и их цветовая маркировка намного облегчают идентификацию каждого конкретного оптоволокна при монтаже муфт и расшивке оптоволоконного кабеля на кроссе.
Оптические модули покрыты водоотталкивающим гелем, предохраняющим от проникновения влаги. Бандажная лента из полиэтилена фиксирует оптические модули и не дает вытечь гелевому наполнителю.
Внутренняя полиэтиленовая оболочка является буферным слоем, разделяющим оптические модули и армирующую броню. В данном примере бронирование выполнено стальной оцинкованной проволокой, надежно защищающей от грызунов и экстремальных нагрузок.
Важнейшим элементом защиты является внешняя оболочка из негорючего высокоплотного полиэтилена. От надежности наружного покрытия зависит длительность безотказного функционирования оптоволоконного кабеля, что диктует строгие требования к технологии его производства.
Недостатки оптоволоконного кабеля
Настал тот самый черед поговорить о некоторых недостатках оптоволоконного кабеля. В первую очередь следует выделить особую сложность соединения. Если кабель поломался, что для него очень вредно, соединить его может только мастер со специальной паяльной станцией. Скрутки медных проводов, как можно было делать раньше, уже не прокатят.
Второй момент связан с тем, что оптоволоконный кабель нельзя ни в коем случае сгибать. Его можно свернуть в кольцо и скорость интернета никак не пострадает вследствие этого. Однако оптоволокно, как и обычную трубу, нельзя сгибать и ломать. Помните в начале статьи я рассказывал про маленькие трубки в оптоволоконном кабеле? Так вот, они легко ломаются, и кабель в данном месте придётся перепаивать.
Во всем же остальном, оптоволоконный кабель, как и интернет, передаваемый по нему, во всем переигрывает кабеля с медными жилами.
Принцип работы волоконно-оптического кабеля
Принцип работы волоконно-оптического кабеля базируется на передаче модулированного светового потока, инициируемого лазером или специальным светодиодом в составе оптического трансивера. Электрические сигналы преобразуются в свет на одном конце ВОК, передаются по оптоволокну и принимаются на другом конце кабеля. На приеме свет конвертируется в исходные электрические сигналы.
Разработчики оптического волокна нашли гениальное решение, разделив его на сердцевину и оболочку с разными показателями преломления света. Лазерное излучение проходит по сердцевине, отражаясь от оболочки, что способствует минимальным потерям мощности даже на протяженных магистралях. Физические параметры полученного световода легко рассчитываются, позволяя изготавливать оптоволоконные кабели с заданными характеристиками, предназначенные для решения конкретных задач.
Дальность распространения световых импульсов ограничивается затуханием и дисперсией. Причинами затухания в оптическом кабеле являются внутренние отражения, рассеяние и поглощение. Дисперсия приводит к искажению исходной формы сигналов, а именно к увеличению их длительности.
Современные ВОК имеют параметры, предоставляющие возможность передавать сигналы на расстояние до 100 км. Учитывая эти ограничения, на магистральных трактах через каждые 80 — 100 км устанавливаются регенерационные пункты, в которых полностью восстанавливается исходный сигнал. Таким образом, можно строить линии связи в несколько десятков тысяч километров.
Типы волоконно-оптического кабеля
Волоконно-оптические кабели разделяются на разные типы, что важно понимать при выборе ВОК для индивидуального проекта. Зная типовые особенности оптоволоконного кабеля, можно без труда подобрать наиболее подходящий вариант
Проверка затухания оптическим рефлектометром
Ну и на финальном этапе остается проверить уровень сигнала непосредственно на самом коннекторе. Оптический рефлектометр не только покажет значение в виде цифры, но и проинформирует на каком расстоянии и в какой точке кабеля происходит падение.
Это не обязательно окажется место пайки, вполне возможно, что сигнал будет теряться на каком-нибудь из поворотов трассы.
Подобными сварочными аппаратами легко и удобно варить кабель GPON для подключения одного или нескольких абонентов. А вот если дело коснется 64-х или 96-ти жильной оптики, то конечно данный процесс с поэтапной заправкой каждой жилки будет сплошным мучением.
При этом нужно иметь очень зоркий глаз, дабы не перепутать цветные оттенки многочисленных жилок.
Для опытного кабельщика на фуджике с отдельным скалывателем, технологический процесс сварки 24-х волокон занимает чуть более 40 минут (1,5минуты на жилу). А сборка кросса, со всеми сопутствующими операциями (разделка, укладка, маркировка) – до полутора часов.
Какой вывод можно сделать из всего вышеизложенного? Конечно, сварить оптику на исправном и настроенном оборудовании, стоимостью в несколько сотен тысяч может каждый, у кого руки растут из нужного места.
А вот настроить этот самый сварочник, скалыватель, плюс поддерживать все это в исправном и работоспособном состоянии годами – для этого уже надо быть профессионалом своего дела и любить данную работу.
https://youtube.com/watch?v=mnYtVLqOGYs%3F
Монтаж
Процесс подключения Интернета через оптоволокно сложнее, чем кажется на первый взгляд. Все преимущества скорости света заключены в хрупком сердечнике, требующего бережного отношения. По сравнению с медной витой парой, обслуживание таких коммуникаций требует повышенной квалификации работников, занятых монтажными работами и подключением абонентского оборудования. Особенно это касается профессиональных бригад, обслуживающих магистрали провайдера. Будь то срочный ремонт или плановое подключение участка — сетевой инженер всегда имеет при себе целый набор инструментов для обслуживания оптоволоконного кабеля для Интернета.
Продвинутые модели оснащены ЧПУ, который регулирует угол и наклон сварки для достижения наилучшего результата. Проблема заключается в том, что даже небольшая погрешность может оказать негативное влияние на скорость передачи данных по оптоволокну.
Процесс монтажа:
- Сначала необходимо подготовить кабель. При помощи специального инструмента срезается внешняя и внутренняя изоляция, а также зачищается сердечник.
- Зачищенное волокно необходимо обработать спиртосодержащим веществом, а затем укоротить до нужной длины при помощи резака.
Затем место сварки покрывается термоусадкой и нагревается до высокой температуры.
- Для подключения готового кабеля к конечному оборудованию его нужно обжать. Процесс обжима оптоволокна различается в зависимости от его типа. Если говорить о бытовом использовании, то в продаже можно найти готовые патч-корды.
Оптические характеристики
Современные технологии производства оптических кабелей позволяют сохранить оптические параметры в кабеле практически на уровне параметров исходного волокна. Так как в производстве используется волокно ведущих зарубежных производителей, то параметры волокон в кабелях не сильно отличаются от производителя к производителю. Рассмотрим нормированные значения показателей оптических волокон:
Одномодовые оптические волокна
Параметр: | Стандартные одномодовые: | Одномодовые со смещенной дисперсией: |
Коэффициент затухания на длине волны 1310 нм, дБ/км, не более: | 0,36 | — |
Коэффициент затухания на длине волны 1310 нм, дБ/км, не более: | 0,22 | 0,22 |
Диаметр модового поля на длине волны 1310 нм, мкм: | 9,3±0,5 | — |
Диаметр модового поля на длине волны 1310 нм, мкм: | 10,5±1,0 | 8,1±0,65 |
Неконцентричность модового поля, мкм, не более: | 0,8 | 0,8 |
Длина волны нулевой дисперсии: | 1270 | 1270 |
Коэффициент хроматической дисперсии в диапазоне дли волн 1285-1330 нм, пс/нм не более: | 3,5 | — |
Коэффициент хроматической дисперсии в диапазоне дли волн 1525-1575 нм, пс/нм не более: | 18 | 3,5 |
Наклон дисперсионной характеристики в области длин волны нулевой дисперсии, пс/нм2км, не более | 0,093 | 0,085 |
Параметры многомодовых волокон
Параметр: | Многомодовое градиентное ОВ с диаметром сердцевины 50 мкм | Многомодовое градиентное ОВ с диаметром сердцевины 62,5 мкм |
Числовая апертура | 0,18…0,24 | 0,25…0,31 |
Коэффициент широкополосности на длине волны 850 нм, не менее МГц*км | 400 | 160 |
Коэффициент широкополосности на длине волны 1300 нм, не менее МГц*км | 500 | 400 |
Коэффициент затухания на длине волны 850 нм, не более дБ/км | 3,2 | 3,2 |
Коэффициент затухания на длине волны 1300 нм, не более дБ/км | 0,7 | 0,7 |
Конструктивные параметры волокон
Параметр: | Размерность | Тип ОВ | |||
Одномодовое | Одномодовое со смещенной дисперсией | Многомодовое 50 мкм | Многомодовое 62,5 мкм | ||
Диаметр сердцевины | мкм | — | — | 50±3 | 62,5±3 |
Неконцентричность сердцевины | мкм | — | — | 2 | 3 |
Диаметр оболочки | мкм | 125±1 | 125±1 | 125±1 | 125±1 |
Некруглость оболочки, не более | % | 2 | 2 | 2 | 2 |
Диаметр защитного покрытия | мкм | 250±15 | 250±15 | 250±15 | 250±15 |
Теперь рассмотрим механические параметры кабелей различных производителей в зависимости от условий прокладки.
Применение
Несмотря на все эти преимущества, нерешенным остается вопрос: что же делать с тем огромным по меркам ВОЛС затуханием, возникающим в полимерных материалах? Действительно, POF имеет заметные ограничения по скорости и дальности передачи информации. Обычно линии на основе пластикового волокна имеют длину порядка нескольких десятков метров, а максимальная скорость передачи ограничивается примерно 200 Мбит/с (скорость передачи может достигать и нескольких Гбит/с, но при этом используются волокна с другим профилем показателя преломления и технология мультиплексирования).
Однако именно эти ограничения и определили сферу применения пластикового волокна. По дальности и скорости передачи POF никогда не смогут конкурировать с кварцевым волокном. Однако в непротяженных сетях, не требующих к тому же высоких скоростей, проявляются преимущества пластикового волокна, о которых писалось выше.
Итак, применение пластикового волокна целесообразно в следующих областях:
Промышленные линии связи. Поскольку пластиковое волокно (как и кварцевое) является диэлектриком, его можно использовать вблизи мощных источников электромагнитных помех, например, вблизи электродвигателей, преобразователей электрической энергии, силовых кабелей. Также POF эффективно осуществляет высоковольтную развязку оборудования с разными потенциалами, а потому может быть использовано там, где оптронная или какая-либо другая развязка неэффективна. Таким образом, пластиковое волокно успешно заменяет медные линии в индустриальных сетях, работающих по протоколам RS-485, Fast Ethernet, Fieldbus.
Датчики. POF с успехом применяется в различного рода промышленных датчиках. Один из примеров – датчик электрической дуги в КРУ подстанций – подробно разбирался на нашем сайте.
Автомобильная электроника
В современной автомобильной промышленности все большее внимание уделяется программно-аппаратным комплексам управления различными системами внутри транспортных средств, в частности мультимедийными системами. Пластиковое волокно полностью удовлетворяет требованиям для среды передачи в таких условиях
Разрабатываются специальные протоколы для автомобильных линий связи (например, MOST – Media Oriented Systems Transport).
Медицина. В медицине пластиковое волокно может использоваться, например, для защиты (изоляции) пациента от пробоя диагностического и лечебного оборудования, а также для связи между блоком управления и высоковольтным оборудованием (рентгеновский аппарат).
Специальные/корпоративные сети передачи данных. Эта сфера применения пластикового волокна пока не получила большого распространения в нашей стране. Однако в масштабах квартиры или офиса пластиковое волокно вполне может конкурировать с традиционными медными линиями.
Системы удаленного освещения. POF может быть использовано не только для передачи информационного сигнала, но и для подсветки удаленных объектов и в рекламных конструкциях.
Если подвести итог, то сфера использования пластикового волокна – любые короткие низкоскоростные линии связи. Особенно эффективно его применение в условиях, в которых передача по медным линиям сопряжена с трудностями или же невозможна вообще, а использование кварцевого волокна экономически невыгодно.
Принцип работы
В основе устройства кабеля из оптоволокна лежат стеклянные световоды. Это своеобразные трассы для транспортировки лучей света от источника до приемника. По привычному нам медному проводнику, который по сей день повсеместно используется в локальных сетях, движутся электроны. Информация кодируется единицами и нулями: если электрический импульс есть, значит он трансформируется сетевой картой в значение «1», и наоборот, если его нет — в «0».
С оптикой ситуация выглядит примерно таким же образом. В ней со скоростью света движутся его пучки — моды. Их присутствие определяет передаваемый бит информации, только со значительно большей скоростью (более 10Гбит/с).
Для отправки светового сигнала применяется лазер, луч которого направлен в сердцевину кабеля. При помощи системы зеркал он экранируется, что позволяет ему проходить изгибы и неровности канала. Концом пути светового потока является конечное оборудование, такое как медиаконвертер или роутер с поддержкой PON.
Его задача заключается в превращении оптического сигнала в электрический и наоборот. От него прокладывается стандартная витая пара и подключается к сетевому оборудованию, например, домашнему роутеру.
Показатели скорости прохода данных по медной витой паре
Медная витая пара делиться на несколько категорий по прописной способности и маркируется буквами CAT, согласно международной системе классификации. Медная витая пара может делиться на классы. А-высший класс (чистая медь, диаметр жилы выше стандарта категории, В-высокий (вторичная медь или медь с примесями других металлов, диаметр жилы равный свой категории), С-средний класс или CCA- Cooper Clad Aluminum, (жилы из алюминия, плакированного медью. Плакирование — это процесс соединения двух и более металлов термомеханическим и химическим способом, напыления или протягивания. D-низкий обмедненный кабель с заниженным показателем сличения жилы. Недавно были добавлены ещё несколько классов кабеля «E, «EA»,»F»,»FA». Кабель данных классов имеет высокую пропускную способность и степень защиты кабеля от внешних электромагнитных помех.
CAT1 полоса пропуска сигнала — 100 кГц. Состоит из оной витой пары применяется для передачи, голосовых сообщений по телефонной или проводной модемной связи. Скорость передачи данных до 0.5 Мбит/с.
CAT2 полоса пропуска сигнала — 1000 кГц. Состоит из двух витых пар, поменяется с телефонии, домофонии старшего поколения. Скорость передачи данных до 4Мбит/с.
CAT3 полоса пропуска сигнала — 16 МГц., и класс кабеля «С». Состоит из двух витых или 4 пар обмедненного кабеля. Используется для снижения затрат при прокладке сетей не требовательных к передаче данных, обладает поддержкой стандарта связи IEEE 802.3. Скорость передачи данных по двум витым парам 10Мбит/с. до 100 Мбит/с по четырем, до 50 метров.
CAT4 полоса пропуска сигнала — 20 МГц. Состоит из четырех витых пар медного кабеля категории В. обмедненного кабеля. Обладает поддержкой стандарта связи IEEE 802.3. Использовался в сетях token ring, 10BASE-T, 100BASE-T4. Скорость передачи данных до 16Мбит/ по одной пате.
CAT5 полоса пропуска сигнала — 100 МГц. Состоит из четырех витых пар медного кабеля категории «D». Используется для снижения затрат при прокладке локальных сетей не требовательных к передаче данных. Скорость передачи данных по двум витым парам 100 Мбит/с. до 1Гбит/с по четырем, до 50 метров.
CAT5e полоса пропуска сигнала — 125 МГц. Это усовершенствованный аналог, витой пары пятой категории. Скорость передачи данных по двум витым парам 100 Мбит/с. до 1Гбит/с по четырем, до 100 метров.
CAT6 полоса пропуска сигнала — 250 МГц класс «E». Состоит из четырех витых пар медного кабеля используется в сетях Fast Ethernet и Gigabit Ethernet. Скорость передачи данных до 10Гбит/с, на расстояние, не превышающее 55 метров.
CAT6a полоса пропуска сигнала -500 МГц. Класс «EA». Состоит из четырех витых пар медного кабеля используется в сетях Fast Ethernet и Gigabit Ethernet. Скорость передачи данных до 10Гбит/с, на расстояние, не превышающее 100 метров.
CAT7 полоса пропуска сигнала 600 — 700 МГц. Класс «F Состоит из четырех витых пар медного кабеля используется в сетях Fast Ethernet и Gigabit Ethernet. Скорость передачи данных до 10Гбит/с, на расстояние, не превышающее 100 метров
CAT7a полоса пропуска сигнала 1000 -1200 МГц. Класс «FA»). Скорость передачи данных до 40Гбит/с, на расстояние, до 50 метров и до 100 Гбит/с дистанцию до 15 метров.
CAT8 8 (8.1, 8.2) полоса пропуска сигнала 1600 -2000 МГц. Класс «FA» Скорость передачи данных до 40Гбит/с, на расстояние, до 100 метров и до 100 Гбит/с дистанцию до 55 метров. Достигает увеличение сечения жилы от Ø 7.7 — 8.5 mm
Дополнительную информацию читайте в разделе проводная компьютерная сеть
Применение
Волоконно-оптическая связь
Волоконно-оптический кабель.
Основное применение оптические волокна находят в качестве среды передачи на волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищённость от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния, возможность оперировать с чрезвычайно высокими скоростями передачи и пропускной способностью даже при том, что скорость света в волокнах на 30 % ниже, чем в медных проводах и на 40 % ниже скорости радиоволн. Уже к 2006 году была достигнута частота модуляции 111 ГГц, в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду. Так, к 2008 году была достигнута скорость 10,72 Тбит/с, а к 2012 — 20 Тбит/с. Последний рекорд скорости — 255 Тбит/с.
С 2017 года специалисты говорят о достижении практического предела существующих технологий оптоволоконных линий связи и о необходимости кардинальных изменений в отрасли.
Волоконно-оптический датчик
Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии дают волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.
Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микрофон, основными элементами которого являются лазерный излучатель, отражающая мембрана и оптическое волокно.
Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.
С использованием полимерных оптических волокон создаются новые химические датчики (сенсоры), которые нашли широкое применение в экологии, например, для детектирования аммония в водных средах.
Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.
Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767[источник не указан 1941 день] и в некоторых моделях машин (для навигации). Волоконно-оптические гироскопы применяются в космических кораблях «Союз». Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.
Другие применения оптического волокна
Диск фрисби, освещённый оптическим волокном
Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптические волокна направляют солнечный свет с крыши в какую-нибудь часть здания. Волоконно-оптическое освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные рождественские ёлки.
Оптическое волокно также используется для формирования изображения. Пучок света, передаваемый оптическим волокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.
Оптическое волокно используется при конструировании волоконного лазера.
По виду оптоволокна
По виду оптоволокна ВОК подразделяются на одномодовые и многомодовые. Под модой понимается траектория распространения светового луча внутри световода. ОВ этих видов отличаются диаметром сердцевины и оболочки.
Световой луч вводят в оптическое волокно одним их двух способов:
- под нулевым углом — одномодовое волокно. Возникает лишь одна мода, распространяющаяся прямолинейно;
- под небольшим углом — многомодовое волокно. Образуются много мод, которые распространяются, многократно отражаясь от оболочки, и достигают точки приема за различное время.
Схема ввода светового луча в оптоволокно
Оптоволоконные кабели с одномодовыми волокнами обеспечивают повышенную дальность передачи без восстановления сигнала и лучшую пропускную способность. Для сравнения:
- одномодовое волокно — 100 км, до 200 Тбит/сек;
- многомодовое волокно — 500 м, до 10 Гбит/сек.
Очевиден вывод о эффективности применения одномодовых волоконно-оптических кабелей на магистралях связи большой протяженности и подключения удаленных сегментов высокоскоростных информационных сетей. Для мультимодовых ВОК находится применение при создании локальных кабельных сетей на небольшой территории.
Виды
Существует множество видов оптоволоконных кабелей в зависимости от характера их применения. Они представлены в двух «режимах»: многомодовом и одномодовом.
Многомодовое волокно (MMF) имеет сердечники двух размеров: 50 мкм и 62,5 мкм. Широкое ядро позволяет передавать несколько потоков данных одновременно. В многомодовом волокне в качестве источника света используется светоизлучающий диод (LED) или лазер с вертикальной полостью, излучающий поверхность (VCSEL). Из-за высокой скорости рассеивания и затухания он обычно используется для передачи большого объема данных на относительно короткие расстояния .
Одномодовое волокно (SMF) имеет гораздо меньший диаметр сердцевины – 8,3 мкм или 9 мкм и единственный световой путь, который может проходить на большие расстояния. Одномодовые волокна обычно используются для более длинных участков, таких как сети передачи данных университетского городка, передачи кабельного телевидения и телекоммуникационные сети.
То, как будет прокладываться кабель, определяет его конструкцию. Наиболее распространенными типами оптических кабелей по их применению являются:
- для внутреннего монтажа;
- для установки в кабельные каналы, с броней или без нее;
- для укладки в грунт;
- подвесной, с тросом или без него;
Тип волокна определяет параметры брони, наличие подвесного троса и других характеристик оптического кабеля. Условия среды могут быть агрессивными, будь то грунт или вода. Наиболее частые поломки линии вызваны механическими повреждениями. Например, во время ремонтных работ кабель может быть поврежден крупногабаритными машинами, или подводные сети оборваны субмаринами или кораблями. Под каждый сценарий применения подбирается соответствующий вид кабеля.
Комплект защиты сварки
После этого оптоволокно аккуратно достается из сварочника. На место сварки надвигается муфточка КДЗС.
Ошибка №14
КДЗС должна полностью покрывать всю длину зачищенного волокна, иначе никакой жесткости не обеспечить.
Остался последний этап работ. Оптоволокно с муфтой помещается в печку, которая обычно расположена в верхней части сварочного прибора.
Выравниваете жилу в этой печке и закрываете крышку. Нажимаете на табло значок печки и ждете некоторое время до появления сигнала.
Далее открыв крышку, достаете ваше оптоволокно. При этом внутри прозрачной муфты не должно быть пузырьков, которые свидетельствуют о наличии воздуха или отдельных деформированных участков (локальный перегрев).
С каждого конца муфты должно показаться и вытечь наружу немного клеящего состава. Все это говорит о хорошей сварке и надежном соединении и изоляции проводов.
При сварке многожильного кабеля все готовые муфты КДЗС обычно укладываются в специальный охлаждающий лоток. Его смысл не просто удобно расположить жилы, дабы они не путались и не мешались, а в равномерном охлаждении гильз.
Некоторые кабельщики делают такие лотки самостоятельно, например из алюминиевых уголков.
При последовательной сварке нескольких жил, не оставляйте надолго муфту в данном отсеке, иначе ее стенки расплавятся и прилипнут к стенкам направляющих элементов.
Ошибка №15
Еще одна ошибка – так называемый “горячий пирожок”.
Это когда еще не совсем остывшую муфту, сразу же из печки перекладывают в ложемент сплайс кассеты оптического кросса. С одной стороны очень удобно, сплавил – вставил, сплавил – вставил. Ничего не запутается и не переплетется с другими жилами.
Однако в этом случае стенки ложемента не дают толком остыть муфточке, мягкие стенки гильзы изгибает, что в итоге деформирует волокно и приводит к потерям.
Как видите, даже при использовании профессионального сварочного оборудования в этом деле имеется огромное количество своих нюансов и тонкостей.
Типы оптоволоконного кабеля
Сварочные аппараты для оптики работают примерно по одному принципу
Поэтому не будем заострять внимание на какой-то одной модели, старый добрый Фуджикура (Fujikura) или Ilsintech, изучим саму последовательность процесса
У вас может быть даже модель с управлением от смартфона. Но это в корне не меняет технологию работ. Она везде одинакова.
Итак, изначально мы имеем два отрезка кабеля ВОЛС, с которых нужно снять внешнюю изоляцию.
Снимая внешнюю оболочку, делайте это с таким прицелом, чтобы в дальнейшем у вас не возникло проблем с укладкой волокон и модулей в сплайс-кассете, кроссе или муфте.
Ошибка №1
Если кабель при этом долго лежал под открытым небом (без защитной капы), перед разделкой обязательно отрезается около 1м с каждого конца.
Дело в том, что нити в кабеле как губка всасывают всю окружающую влагу. В итоге оптоволокно мутнеет.
И даже если вы идеально сделаете соединение, это все равно в дальнейшем не спасет вас от больших потерь сигнала.
Включаете аппарат и выставляете на нем тип кабеля, который будет соединяться.
Различают одномодовые (SM) и многомодовые (MM) оптические кабеля.
На одномодовых волокнах в основном используется три длины волны (три окна прозрачности):
850нм
1310нм
1550нм
Все зависит от общей длины трассы и используемого оборудования. Кроме того, волокна подразделяют на:
обычные — SM
со смещенной дисперизацией — DS
с ненулевой смещенной дисперизацией — NZ
Внешне их никак не отличить. При сварке чаще всего работают с простыми и со смещенкой. Соединять смещенку и простые волокна не рекомендуется.
Сварка оптоволокна и уровень затухания сигнала
Подготовленная и зачищенная жила аккуратно вкладывается в посадочное место для сварки, чуть-чуть не доставая своим кончиком середины электрода.
Все те же операции проделываются со вторым концом кабеля.
Ошибка №12
Не забудьте перед этим одеть на второй конец муфточку КДЗС (комплект динамической защиты сварочного соединения), иначе потом будет поздно.
КДЗС — это две термоусадочные трубочки, между которыми располагается стальной штифт.
Волокна должны попасть именно в центральную трубочку, а не между ними.
В противном случае после пайки стальной штифт может его поломать.
Подготовленный второй конец закладывается в сварочник с обратной стороны от первого.
В итоге идеально чистые и ровно срезанные два конца волокна, должны оказаться между двух электродов, которые и будут выполнять сварку.
Если один из концов оказался слишком далеко от электродов и заданного положения, прибор известит вас об этом.
Также высветится ошибка, если волокна будут пересекать друг дружку.
Как только вы закрываете крышку происходит процесс самодиагностики, калибровки и выравнивания двух концов. Все это выводится на экран.
Если все нормально, нажимаете кнопку сварки и она запускается автоматически. Если вдруг один из кончиков оказался срезан недостаточно ровно, система известит вас об этом, не только просигналив об ошибке, но и известив какой конец кабеля виноват.
В данной ситуации процесс зачистки и скалывания повторяется. Со вторым, нормально зачищенным концом ничего делать не нужно.
При успешном завершении сварочного процесса (длится пару секунд), на экран выводятся потери или затухание сигнала в децибелах. Очень хорошим результатом считается 0,01-0,02дб.
Идеал – это соединение вообще без потерь. Бывает и такое.
Хотя даже на заводских пигтейлах (от английского pig tail – поросячий хвостик) встречаются не такие уж идеальные пайки.
При неудовлетворительных результатах сварки, монитор качественных аппаратов проинформирует вас об этом.
Допустимыми значениями затухания считаются следующие параметры:
Ошибка №13
Однако никогда не полагайтесь только на результат показаний сварочного аппарата.
Для конечной проверки результата обязательно требуется рефлектометр. Иначе после окончания всех работ будете задаваться вот такими вот вопросами:
Объясняется это тем, что камера микроскопа сварочника не способна увидеть всю картинку в 360 градусов вокруг волокна. Отсюда и погрешность.
После сварки и открытия крышки аппарат с расчётным усилием пытается развести жилки, как бы растягивая их. Тем самым проводится тест на прочность контакта.
Если сварка выдержала и не порвалась – все ОК. Однако некоторые кабельщики отключают программно такой тест, предполагая, что такое «растягивание» может повредить еще не до конца остывший контакт.
Скалыватель оптических волокон
После снятия лакового слоя с волокна, его требуется протереть безворсовой салфеткой, смоченной в спирте.
Ошибка №7
При чистке следующего волокна рекомендуется использовать другую салфетку, ну или по крайней мере ту ее часть, которая не участвовала в предыдущей очистке, либо не контактировала с вашими пальцами.
Если жила идеально чистая, протирая ее салфеткой, вы должны услышать характерный скрипящий звук.
Ошибка №8
С этого момента дотрагиваться до волокна руками или чем-либо другим ни в коем случае нельзя.
Более того, пока вы ее не поместили в сварочный аппарат, на нее даже пылинки не должно осесть. Это все влияет на качество сварки и уровень потерь.
После этого волокно нужно идеально ровно отрезать.
Ошибка №9
Нельзя это делать каким-либо другим инструментом, кроме специального скалывателя.
Хотя в СССР на ранних порах развития оптики, применялся даже вот такой универсальный набор кабельщика ВОЛС.
Срез должен быть очень четким, иметь строго цилиндрическую форму, без каких-либо углов и сколов.
Скалыватель может быть как встроен в сварочный аппарат, так и идти отдельным инструментом. Второй вариант предпочтительнее.
Просто помещаете проводок в скалыватель и закрываете крышечки до щелчка.
Ошибка №10
Внимание – остатки и отрезанные кусочки оптоволокна должны обязательно собираться в отдельный контейнер.
Нельзя чтобы они упали на пол, на стол или попали еще куда-либо. Толщина этих жилок настолько мала, что попав вам под кожу, этот кусочек может проникнуть в вену и начнет свое путешествие по всему организму. Также его можно случайно вдохнуть в легкие.
Все это в конечном итоге приведет к печальным последствиям.
Многие решают проблему сбора обрезков при помощи обычных кусочков изоленты. Дешево и сердито.
Ошибка №11
После скалывания волокно больше нельзя протирать спиртом или касаться им чего-либо.
Даже находиться с ним в пыльных или антисанитарных условиях запрещено. Создайте для этого подходящее рабочее место (палатка, затащите и спрячьте кабель в машину и т.п).
Показатели скорости прохода данных оптоволоконному кабелю по одному волокну
Мы не будем рассматривать частные случаи, получения максимальных скоростей и описывать новую технологию передачи данных по одному волокну потоком данных до 26 Тбит/с. Как как данная технология является экспериментальной и оборудование, на котором был поставлен эксперимент группой немецких инженеров во главе профессором Вольфгангом Фройде, не доступно в обычной продаже.
Факторы влияния на показатели скорости прохода данных оптоволоконному кабелю
Межмодовая, поляризационная или хроматическая дисперсия является настоящим барьером для пропускной способности оптоволоконного кабеля. Чем больше длинная волоконно-оптического кабеля, тем больше пагубное влияние эффектов на скорость передачи данных.
Для начала давайте разберемся что такое дисперсия.
Дисперсия от лат. dispersio (рассеивание). Простым языком это диапазон значений
случайной величины относительно её математического ожидания.
Типы оптоволоконной дисперсии
Межмодовая дисперсия простым языком — изменение длин светового импульса при прохождении через оптоволокно, когда вся энергия не достигает конца оптоволокна одновременно.
Расширение импульса в многомодовом оптоволокне
Хроматическая дисперсия простым языком — влияние суммарной скорости прохождения световых импульсов от разности длины волны передаваемого сигнала.
Поляризационная модовая дисперсия простым языком- это разница времени отражения импульса сигнала, из-за изменения геометрических характеристик симметрии волокна.
Факторы появления поляризационной модовой дисперсии в одномодовом волокне.
- механических натяжение оптических волокон (встречается в оптическом кабеле натянутые между опорами)
- термическое воздействие на оптические волокон (при нарушении условий эксплуатации и монтажа волоконно-оптических линий связи)
- деформационное воздействие на оптические волокон (при нарушении условий монтажа ВОЛС в грунт)
- скручивая с изменением геометрических характеристик волокон (нарушение условий сварки оптики и правил монтажа в муфту или оптический кросс)