Пуэ-7 п.1.7.76-1.7.87 меры защиты при косвенном прикосновении

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом с контуром заземления здания, выполненного из полосы металла при помощи сварки.

Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу. Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат). Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
S≤16 S
16 < S≤35 16
S>35 S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия

При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом

Заземляем сами

При прокладке заземляющего контура защиты в первую очередь необходимо выбрать тип схемы, по которой будут вестись работы. Опытные мастера рекомендуют выбирать схему типа TN-C-S. Её основное преимущество заключается в том, что оборудование имеет непосредственный контакт с землей. Контакт нейтрали и земли ведется одним проводником, а на входе в щиток разделяются на 2 отдельных. Данная схема обеспечивает надежную защиту, поэтому устанавливать УЗО нет необходимости, достаточно лишь простых автоматов. Однако согласно ПУЭ обязательно выполнить требования по механической защите общего контакта нейтрали и земли (PEN), а также создать дополнительное резервное заземление на опорах на расстоянии 200 м или 100 м.

Создать контур защитного заземления достаточно просто, если руководствоваться правилами перечисленными ниже. В первую очередь для создания контура необходимо выбрать схему защитного заземления, их существует несколько видов, самые надежные и удачные:

  • замкнутая (выполняется, как правило, по форме треугольника);
  • линейная.

В замкнутой схеме все заземляющие проводники вкопаны в землю, находятся на одной глубине и соединены между собой металлической перемычкой. Основное преимущество — работоспособность в случае разрыва (от коррозии или других воздействий) металлической перемычки.

В линейной же схеме проводники выстроены в одну линию и соединены перемычкой последовательно друг с другом. Данная схема чуть более проста в создании, но имеет недостаток — при повреждении перемычки из строя выходит вся система.

Создание контура заземления

Итак, для создания контура заземления нам понадобятся следующие инструменты и материалы:

  • Лопата.
  • Сварочный аппарат (обязателен).
  • Пила по металлу или болгарка.
  • Кувалда.
  • Пассатижи, гаечные ключи.
  • Металлический уголок/швеллер/П-образный профиль из нержавеющий стали длиной от двух метров (с площадью поперечного сечения ДО 150 мм²).
  • Металлические полоски длиной от 110 см, шириной 4 см, толщиной 4–5 мм.
  • Металлическая полоса необходимой длины (от места залегания до места контакта с домом), ширина 4 см, толщина 4–5 мм.
  • Крупные болты, гайки и шайбы (М8-М10).
  • Провод из меди с толщиной не менее 6 мм².

После того как все необходимое имеется в наличии можно приступать к монтажу защитного заземления. В первую очередь следует выбрать место, лучше всего выбрать такой участок земли, где редко находятся люди или животное, так как во время отвода электричества в почву может произойти поражение электрическим током. Лучше всего выбрать место на границе участка, на максимальном удалении от зоны постоянного посещения.

После чего необходимо выкопать узкую траншею глубиной 60–70 см от места контакта с домом до места отвода электричества. В месте отвода электричества необходимо выкопать соответствующую фигуру (в зависимости от выбранной схеме) со сторонами ~1.2 м между проводниками.

Затем в каждом углу фигуры (у нас это треугольник) — вкапываются металлические уголки в землю на глубину 2 м и больше. К торчащим концам вкопанных проводников привариваются заготовленные заранее металлические пластины, к одному концу которой приваривается полоса-проводник, идущая непосредственно к месту контакта заземления с домом.

В месте контакта заземления к этой пластине монтируется провод из меди, который уже выходит из под земли и выводится в электрощиток.

После выполнения этих работ траншеи обратно закапываются. На данном этапе работы по защитному заземлению можно считать законченными.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  1. Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  2. Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  1. Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  2. Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Заземляющая шина в распределительном шите

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению). Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи)

Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже)

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Главная заземляющая шина

1.7.85

Защитное электрическое разделение цепей следует
применять, как правило, для одной цепи.

Наибольшее рабочее напряжение отделяемой цепи не должно
превышать 500 В.

Питание отделяемой цепи должно быть выполнено от
разделительного трансформатора, соответствующего ГОСТ 30030 «Трансформаторы разделительные и безопасные
разделительные трансформаторы», или от
другого источника, обеспечивающего равноценную степень безопасности.

Токоведущие части цепи, питающейся от разделительного тpaнсформатора,
не должны иметь соединений с заземленными частями и защитными проводниками
других цепей.

Проводники цепей, питающихся от разделительного
трансфоматора, рекомендуется прокладывать отдельно от других цепей. Если это
невозможно, то для таких цепей необходимо использовать кабели без металлической
оболочки, брони, экрана или изолированные провода, проложенные в изоляционных
трубах, коробах и каналах при условии, что номинальное напряжение этих кабелей
и проводов соответствует наибольшему напряжению совместно проложенных цепей, а
каждая цепь защищена от сверхтоков.

Если от разделительного трансформатора питается только один
электроприемник, то его открытые проводящие части не должны быть присоединены
ни к защитному проводнику, ни к открытым проводящим частям других цепей.

Допускается питание нескольких электроприемников от одного
разделительного трансформатора при одновременном выполнении следующих условий:

1) открытые проводящие части отделяемой цепи не должны
иметь электрической связи с металлическим корпусом источника питания;

2) открытые проводящие части отделяемой цепи должны быть
соединены между собой изолированными незаземленными проводниками местной
системы уравнивания потенциалов, не имеющей соединений с защитными проводниками
и открытыми проводящими частями других цепей;

3) все штепсельные розетки должны иметь защитный контакт,
присоединенный к местной незаземленной системе уравнивания потенциалов;

4) все гибкие кабели, за исключением питающих оборудование
класса II, должны иметь защитный проводник, применяемый в качестве проводника
уравнивания потенциалов;

5) время отключения устройством защиты при двухфазном
замыкании на открытые проводящие части не должно превышать время, указанное в
табл.1.7.2.

1.7.82

Основная система уравнивания потенциалов в
электроустановках до 1 кВ должна соединять между собой следующие проводящие
части (рис.1.7.7):

1) нулевой защитный PE— или PEN-проводник питающей линии в системе ;

2) заземляющий проводник, присоединенный к заземляющему
устройству электроустановки, в системах  и ;

3) заземляющий проводник, присоединенный к заземлителю
повторного заземления на вводе в здание (если есть заземлитель);

4) металлические трубы коммуникаций, входящих в здание:
горячего и холодного водоснабжения, канализации, отопления, газоснабжения и
т.п.

Если трубопровод газоснабжения имеет изолирующую вставку на
вводе в здание, к основной системе уравнивания потенциалов присоединяется
только та часть трубопровода, которая находится относительно изолирующей
вставки со стороны здания;

5) металлические части каркаса здания;

6) металлические части централизованных систем вентиляции и
кондиционирования. При наличии децентрализованных систем вентиляции и
кондиционирования металлические воздуховоды следует присоединять к шине PE щитов питания
вентиляторов и кондиционеров;

7) заземляющее устройство системы молниезащиты 2-й и 3-й
категорий;

8) заземляющий проводник функционального (рабочего)
заземления, если такое имеется и отсутствуют ограничения на присоединение сети
рабочего заземления к заземляющему устройству защитного заземления;

9) металлические оболочки телекоммуникационных кабелей.

Рис.1.7.7. Система уравнивания потенциалов в здании:

 — открытая проводящая часть;  — металлические трубы водопровода, входящие
в здание;

  —
металлические трубы канализации, входящие в здание;  — металлические трубы
газоснабжения

с изолирующей вставкой на вводе, входящие в здание;   — воздуховоды вентиляции
и кондиционирования;

 — система отопления;  — металлические водопроводные трубы в
ванной комнате;   —
металлическая

ванна;  — сторонняя проводящая часть в пределах
досягаемости от открытых проводящих частей;

  —
арматура железобетонных конструкций; Г3Ш — главная заземляющая шина;  — естественный

заземлитель;   — заземлитель молниезащиты (если имеется);

1 — нулевой защитный
проводник; 2 — проводник основной системы уравнивания потенциалов;

 3 — проводник дополнительной системы уравнивания
потенциалов; 4 — токоотвод системы молниезащиты;

5 — контур
(магистраль) рабочего заземления в помещении информационного вычислительного
оборудования;

 6 — проводник рабочего (функционального)
заземления; 7 — проводник уравнивания потенциалов

в системе рабочего (функционального) заземления; 8
заземляющий проводник

Проводящие части, входящие в здание извне, должны быть
соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов
все указанные части должны быть присоединены к главной заземляющей шине
(1.7.119-1.7.120) при помощи проводников системы уравнивания потенциалов.

Сотрудничество с компанией Cablestar

Если вам необходимо , достаточно позвонить в нашу компанию и оформить заказ. У нас есть большой выбор качественной кабельно-проводниковой продукции. В наличии вы сможете найти кабели ВВГнгLS, (в том числе ) и другие марки проводов. В случае, если вам необходима подробная профессиональная консультация, специалисты компании готовы ее предоставить. Обращайтесь к нам по контактному телефону или оставляйте заявки на сайте, в режиме онлайн, и консультанты помогут выбрать соответствующий кабель, а также оформить ваш заказ. Мы всегда ориентируемся на потребности и предпочтения клиентов.

В нашей компании вас ждут выгодные условия сотрудничества. Мы предлагаем всем заказчикам оптимальные цены и гарантируем полное соответствие кабельно-проводниковой продукции всем заявленным свойствам и характеристикам.

сайт отвечает

2.3.71. Кабели с металлическими оболочками или броней, а также кабельные конструкции, на которых прокладываются кабели, должны быть заземлены или занулены в соответствии с требованиями, приведенными в гл. 1.7.

2.3.72. При заземлении или занулении металлических оболочек силовых кабелей оболочка и броня должны быть соединены гибким медным проводом между собой и с корпусами муфт (концевых, соединительных и др.). На кабелях 6 кВ и выше с алюминиевыми оболочками заземление оболочки и брони должно выполняться отдельными проводниками. Применять заземляющие или нулевые защитные проводники с проводимостью, большей, чем проводимость оболочек кабелей, не требуется, однако сечение во всех случаях должно быть не менее 6 мм 2 . Сечения заземляющих проводников контрольных кабелей следует выбирать в соответствии с требованиями 1.7.76-1.7.78. Если на опоре конструкции установлены наружная концевая муфта и комплект разрядников, то броня, металлическая оболочка и муфта должны быть присоединены к заземляющему устройству разрядников. Использование в качестве заземляющего устройства только металлических оболочек кабелей в этом случае не допускается. Эстакады и галереи должны быть оборудованы молниезащитой согласно РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений» Минэнерго СССР.

2.3.73. На кабельных маслонаполненных линиях низкого давления заземляются концевые, соединительные и стопорные муфты. На кабелях с алюминиевыми оболочками подпитывающие устройства должны подсоединяться к линиям через изолирующие вставки, а корпуса концевых муфт должны быть изолированы от алюминиевых оболочек кабелей. Указанное требование не распространяется на кабельные линии с непосредственным вводом в трансформаторы. При применении для кабельных маслонаполненных линий низкого давления бронированных кабелей в каждом колодце броня кабеля с обеих сторон муфты должна быть соединена сваркой и заземлена.

2.3.74. Стальной трубопровод маслонаполненных кабельных линий высокого давления, проложенных в земле, должен быть заземлен во всех колодцах и по концам, а проложенных в кабельных сооружениях — по концам и в промежуточных точках, определяемых расчетами в проекте. При необходимости активной защиты стального трубопровода от коррозии заземление его выполняется в соответствии с требованиями этой защиты, при этом должна быть обеспечена возможность контроля электрического сопротивления антикоррозийного покрытия.

2.3.75. При переходе кабельной линии в воздушную (ВЛ) и при отсутствии у опоры ВЛ заземляющего устройства кабельные муфты (мачтовые) допускается заземлять присоединением металлической оболочки кабеля, если кабельная муфта на другом конце кабеля присоединена к заземляющему устройству или сопротивление заземления кабельной оболочки соответствует требованиям гл. 1.7.

Электрический кабель с защитным покровом из металлических лент или одного или нескольких повивов металлических проволок называется бронированным (ГОСТ 15845-80). Это достаточно эффективный способ защиты проводников от механического разрушения и от разрушения под воздействием температуры, влаги и ультрафиолетового излучения. Для того чтобы оборудование служило долго и безаварийно, прокладка бронированных кабелей должна осуществляться по всем правилам. Требования по проведению таких работ изложены в «Правилах технической эксплуатации электрических станций и сетей Российской Федерации», утвержденных Минэнерго РФ от 19.06.2003 и обязательных к исполнению на всей территории РФ.

Заземление бронированного кабеля — необходимое условие для безопасной эксплуатации и обслуживания кабельной линии. Действующие нормативные документы предписывают заземлять все токопроводящие части проводников.

Наиболее распространенные ошибки

При создании контура следует избежать ряда ошибок:

Если решено обратиться к электромонтажникам, необходимо особое внимание уделить качеству материалов, которые рабочие собираются использовать. Некоторые подрядчики стремятся удешевить свои услуги путем экономии на электродах, устанавливая проводники с небольшой проводимостью (к примеру, заржавевшую арматуру)

Некачественные материалы значительно снижают эффективность защиты или даже делают затею вовсе бессмысленной.
Устройство заземления находится на слишком большом расстоянии от дома.
Установка контура в сухом месте. Вода улучшает проводимость — чтобы система работала эффективно, она должна находиться во влажном месте. Если такое место отсутствует, придется задуматься об искусственном увлажнении.
Объединение заземлительного контура с молниезащитой. Если в распредщите не вмонтировано устройство УЗИП, размыкающее цепь в виде ответной реакции на сверхзаряд, значительный ток из молниеприемника выведет из строя электрическое оборудование.

Контур заземления — важнейшая мера, обеспечивающая безопасность пользования электрическими приборами в частном доме. Если решено выполнить все работы своими руками, необходимо аккуратно придерживаться всех технических правил и рекомендаций, в том числе по технике безопасности. Если уверенности в своих силах недостаточно, лучше обратиться за помощью к специалистам.

Устройство и типы контуров

Стандартный контур заземления изготавливается не только в виде оптимального для большинства условий треугольника; он может иметь форму линии, прямоугольника, угла или даже дуги (овала). При рассмотрении каждой из этих конструкций с точки зрения их сопротивления необходимо отметить следующее:

  • Основой конструкции являются забиваемые в землю штыри или стержни;
  • Между собой они соединяются нарезанными по длине металлическими полосами (так называемой «металлосвязью»);
  • К одному из штырей или к полоске металла приваривается медная шина, прокладываемая в отдельной канавке, как это изображено на приведённом ниже рисунке.

Выбор треугольника в качестве основного вида заземлителя объясняется тем, что в этом случае удаётся получить максимальную зону рассеивания при небольшой занимаемой площади. Материальные затраты на такую конструкцию минимальны, а величина сопротивления растеканию в грунте при правильном её обустройстве соответствует нормативам.

Расстояние между штырями треугольного контура обычно выбирается равным длине, а максимальное удаление одного от другого может быть вдвое больше. Так, если штыри заглубляются в землю на 250 сантиметров, оно может достигать 5-ти метров. Лишь при соблюдении этих условий удаётся получить оптимальные характеристики зарытого в землю сооружения.

Линейный контур представляет собой цепочку штырей, вбитых в землю с определённым шагом, равным примерно 5-10 метров (смотрите рисунок далее по тексту).

В отдельных случаях, зависящих от условий местности, конструкция сооружается в виде полукруга; при этом штыри располагаются на том же удалении один от другого. В таком распределённом устройстве сопротивление должно быть минимальным именно в точках соприкосновения прутьев с грунтом. Для достижения требуемого показателя Rз штырей забивается как можно больше.

Все остальные типы конструкций являются модификациями описанных выше заземлителей, а предъявляемые к ним требования по сопротивлению стекания являются производными от уже рассмотренных.

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия

При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом

1.7.90

Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и объединять их между собой в заземляющую сетку.

Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5-0,7 м от поверхности земли и на расстоянии 0,8-1,0 м от фундаментов или оснований оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены друг к другу, а расстояние между основаниями или фундаментами двух рядов не превышает 3,0 м.

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5-0,7 м от поверхности земли. Расстояние между ними рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0; 20,0 м. Размеры ячеек заземляющей сетки, примыкающих к местам присоединения нейтралей силовых трансформаторов и короткозамыкателей к заземляющему устройству, не должны превышать 66 м.

Горизонтальные заземлители следует прокладывать по кpaю территории, занимаемой заземляющим устройством так, чтобы они в совокупности образовывали замкнутый контур.

Если контур заземляющего устройства располагается в пределах внешнего ограждения электроустановки, то у входов и въездов на ее территорию следует выравнивать потенциал путем установки двух вертикальных заземлителей, присоединенных к внешнему горизонтальному заземлителю напротив входов и въездов. Вертикальные заземлители должны быть длиной 3-5 м, а расстояние между ними должно быть равно ширине входа или въезда.

Итог

Подводя итог всему сказанному, обратим внимание на рекомендации, которыми делятся опытные мастера:

  • Перед началом монтажных работ желательно подготовить чертеж будущей конструкции, который может понадобиться при дальнейшей эксплуатации. При его наличии легче восстановить в памяти схему расположения штырей.
  • Отрезки электродов допускается вбивать не только в угловых точках треугольника. Их можно располагать как в линию, так и по дуге. Главное, чтобы суммарное сопротивление растеканию тока, создаваемое всей цепочкой, не превышало 3-4-х Ом.
  • Если оно больше нормируемого значения, то систему придется доработать, добавив в нее еще пару стержней.
  • При отсутствии опыта самостоятельной проверки сопротивления заземления — лучше всего пригласить специалиста.

После ознакомления со всеми тонкостями процесса сборки и тестирования ЗК, попытаться изготовить его своими руками может каждый желающий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector