Что такое термопара: об устройстве простыми словами

Термопара — описание

Термопара — это наиболее часто используемый датчики для измерения температуры. Ее используют в промышленности, лабораториях, на транспорте. Термопара используется в очень многих системах сбора данных, в многоканальных устройствах, в системах мониторинга данных и управления промышленными процессами.

Несмотря на ее широкое распространение, принцип работы термопары, на первый взгляд кажется менее понятным, чем работа иных датчиков температуры. Существует множество различных видов термопар и для получения с их помощью точных результатов измерения необходим правильный подбор пар металлов, устранения существующих ограничений и соответствующая обработка измерительных данных.

Преимущества термопары

Термопары имеют много преимуществ по сравнению с другими типами температурных датчиков. Основное преимущество — термопара не дорогая, хотя защитное покрытие, соединительные провода и разъемы могут существенно повлиять на общую стоимость измерительной системы, особенно, когда измеряемая среда является экстремальной.

Термопары являются также устройствами, механически простыми, прочными и надежными. Свойства типичных металлов, используемых в термопарах, дают предсказуемое выходное напряжения. Это позволяет использовать термопары во многих устройствах, в том числе в химически агрессивных средах.

Физическая конструкция термопары проста – все, что нужно для ее изготовления, — это скрученные вместе и спаянные провода соответствующих сплавов.

Промышленные термопары изготавливаются с помощью сварки, скручивания или пайки. Термопары покрывают широкий диапазон измеряемых температур: от -100°C и до 2500°C. Типичная точность измерения составляет ±1-2°C, что превышает требуемую точность в большинстве промышленных процессов.

Недостатки термопар

Несмотря на то, что термопары имеют относительно мало недостатков, но они значительно влияют на их применение и на оборудование, которое необходимо для их работы. К недостаткам следует отнести то, что выходное напряжение термопары составляет порядка нескольких микровольт на градус Цельсия, и что эти элементы, как правило, размещены вдали от устройств сбора и обработки данных.

Чтобы компенсировать влияние этих негативных факторов используют дифференциальный режим измерений, схемы с высоким коэффициентом усиления, фильтрацию и другие методы улучшения качества сигнала, призванные получить максимальный сигнал и минимальный шум.

И все это приводит к тому, что получается низкая скорость измерений, как правило, нескольких сотен замеров в секунду. Кроме того, выход с термопары является нелинейным, поэтому в оборудование или программное обеспечение, должна быть использована функция линеаризации, применяемая для преобразования напряжения термопары в значения температуры. Это касается в основном бытовых программ, так как коммерческая программа обычно включает в себя процедуры линеаризации.

ТП с ИП с выходным цифровым сигналом Profibus (РА)

Исполнение датчика (НСХ) Тип выходного сигнала Диапазон измерений температуры, °С Пределы допускаемой основной приведенной погрешности (при температуре окружающей среды (tокр) от +18 до +22 °С), % (от диапазона измерений) 1) 2)
ТНН (N)

Стандарт

Profibus

(PA)

от -40 до +1250 ±0,25; ±0,5; ±1,0
ТХА (К) от -40 до +1250

1) Разность верхнего и нижнего пределов диапазона измерений должна быть:

  • не менее 400 °С для ТП с пределом допускаемой основной приведенной погрешности ±0,25 %,
  • не менее 200 °С для ТП с пределом допускаемой основной приведенной погрешности ±0,5 %,
  • не менее 100 °С для ТП с пределом допускаемой основной приведенной погрешности ±1 %.

2) Пределы допускаемой дополнительной погрешности ТП с ИП, вызванной изменением температуры окружающего воздуха в рабочем диапазоне температур на каждые 10 ° от (20±2) °С, не превышают:

  • 0,15 % — для ТП с пределами допускаемой основной приведенной погрешности ±0,25 %, ±0,3 %;
  • 0,25 % -для ТП с пределами допускаемой основной приведенной погрешности ±0,4 %, ±0,5 %;
  • 0,5 % -для ТП с пределом допускаемой основной приведенной погрешности ±1 %.

Разновидности и конструктивные особенности

Виды термопар

Термопары ввиду своих структурных особенностей подразделяются на такие виды:

  1. По специфике применения:
  • Наружное;
  • Погружаемое.
  1. По особенностям предохраняющего кожуха:
  • без кожуха;
  • со стальным кожухом – устройство эксплуатируется для контроля температур до 600оС;
  • со стальным кожухом из специфического сплава – устройство необходимо для измерения температур до 1100оС;
  • с кожухом из фарфора – устройство применяется для контроля температур до 1300оС;
  • со стальным кожухом из тугоплавких сплавов – устройство эксплуатируется при температурах более 2000оС.
  1. По методу фиксации термопреобразователей:
  • С неподвижным чувствительным элементом;
  • С подвижным чувствительным элементом;
  • С подвижным креплением.
  1. По герметичности клемм:
  • С простой верхушкой;
  • С водонепроницаемой верхушкой;
  • Без колпачка, со специфической герметизацией выводных клемм.
  1. По изолированности:
  • Изолированные от влияния активных или неагрессивных сред;
  • Не изолированные.
  1. По герметизации от большого давления:
  • Не герметичные;
  • Герметичные.
  1. По стойкости к механическому влиянию:
  • Устойчивые к вибрации;
  • Ударостойкие;
  • Простые.
  1. По количеству контролируемых зон:
  • Рассчитанные на одну зону;
  • Рассчитанные на несколько зон.
  1. По скорости реакции на изменение температуры:
  • С высокой инерционностью. Скорость реагирования составляет до 210 секунд;
  • С посредственной собственной инерцией. Скорость реакции составляет до 60 секунд;
  • С малой инерционностью. Скорость реакции составляет до 40 секунд;
  • С ненормированной скоростью реакции.
  1. По длине функционирующей части:
  • Длиной от 120 мм до 1580 мм. Находят свое применение в однозонных термопарах;
  • Длиной до 20000 мм. Используются в многозонных термопарах.

К конструктивным особенностям термопар относятся:

  1. Рабочий спай двух проводников в основном образовывается путем электродуговой сварки предварительно скрученных термоэлектродов. Одним из способов соединения является пайка, однако подключение термопары вольфрам-рениевой или вольфрам-молибденовой обходится обычным скручиванием без дополнительной сварки;
  2. Проводники соединяются только в активной части. Остальная часть проводов строго изолируется;
  3. Изоляционным материалом может быть любой источник, вплоть до воздуха, однако температура измеряемой среды должна быть ниже 120оС. При температурах вещества до 1300оС применяются фарфоровые изоляторы. Поскольку при t> 2000оС фарфор теряет свои физические свойства и размягчается, то применяются трубки из окиси алюминия, магния, бериллия, тория, циркония;
  4. Для предотвращения механического влияния на термопару ее помещают в предохранительную трубку-кожух с герметизированным концом. Этот кожух должен обеспечивать изоляцию от внешней среды, предотвращать механические натяжения и обеспечивать хорошую теплопроводность. Выдерживание предельной температуры термопары в течение длительного времени и стойкость к активной среде контролируемого вещества являются основополагающими требованиями к трубке-кожуху.

Изготовление термопары для мультиметра самостоятельно

Термопара, созданная своими руками, это сенсор в своей основе конструктивно аналогичный заводскому: два спаянные разные по составу электроды.

Перечень материалов, инструментов:

  • константин. Есть в старых советских низкоомных керамических резисторах ПЭВ-10 или подобных им;
  • проволока, медь;
  • зажигалки: турбо («печка») и обычная.

Приемником данных может быть любой цифровой или аналоговый тестер. С помощью такой ТП для мультиметра можно замерять температуру исследуемых объектов.

Где взять проволоку

Чем меньше сечение проволоки, тем ниже погрешности ТП, поскольку понижается само влияние массива жил на теплообмен.

В нашем примере взяты 2 проводка из таких сплавов:

  • константиновый. Берем из старого керамического резистора ПЭВ-10. Сплав также содержит зарубежный аналог 1R00JSMT и подобные типы радиодеталей. Некоторые такие радиодетали с нихромом — он не подойдет;
  • медный проводок: из обмотки б/у трансформаторов от бытовых приборов, из кабелей, например, витой пары.

Скрутка, сварка

Делаем скрутку из 2 проводков. Затем свариваем этот конец: так как жилы тонкие, то подойдет зажигалка турбо, в народе «печка». Должна получиться круглая головка-капелька. Оставшиеся витки затем надо раскрутить, чтобы не было замыкания.

Принцип работы мы уже описали: при нагревании в месте горячего спая, то есть головки-капельки возникает разница потенциалов, инициирующая малый ток, который будет течь по проводкам к приемнику (мультиметру). Значения такого электричества будут характеризовать определенную температуру.

Другие способы сварки

Спаять проводки можно и кустарной сваркой, например, применив лабораторные автотрансформаторы, автомобильный аккумулятор. К одному полюсу («+») такого источника подсоединяем оба конца термопары, скрученные или соединенные механически проволокой. К другому подключаем вывод («−»), присоединенный к куску графита. Возникнет электродуга, произойдет сварка.

Напряжение для сварки подбирают экспериментально: начинают с малых значений 3–5 В и постепенно увеличивают до нужного результата. Оптимальное значение зависит от металла проволоки, ее сечения, длины — оно обычно не превышает 40–50 В. Соблюдают безопасность: не касаются к оголенным участкам, не подают слишком большое напряжение. Для удобства опасные сегменты изолируют изолентой, кембриком, керамическими трубками.

Хорошее соединение получают, разогревая проводки дуговым разрядом, зажигая его между ними и крепким (ропа) раствором поваренной соли.

Другие сплавы для электродов

Выше мы показали пример с электродами константин-медь. Термопара для измерения температуры своими руками может быть создана и с проволоки с иных материалов (сплавы см. выше в табл.). Такие материалы продаются на узкоспециализированных торговых площадках, но все-таки достать их сложнее, наиболее доступный из них хромель и алюмель.

Проверка самодельной термопары для мультиметра

Электроды собранного датчика подсоединяем к мультиметру аналогично как щупы. Затем измеряете среду: нагреваете головку зажигалкой, наблюдаете табло тестера. В нашем случае мультиметр показал напряжение 50 мВ и ток в 5 мкА, это максимальное значение для данной самоделки.

Калибровка

Откалибровать самодельную термопару и создать базу данных какое значение какой температуре соответствует, можно, опуская ТП в жидкость с заранее известной температурой (надо будет значительно ее нагреть). Останется сопоставить t° с показаниями мультиметра и записать цифровые соответствия.

Условия эксплуатации

Вид климатического исполнения ТС по ГОСТ 15150-69: УХЛ3.1 или У1.1, но для работы при температуре окружающей среды -см. в таблице 2, верхнем значении относительной влажности 98 % (при 25 °С) и более низких температурах без конденсации влаги

Таблица 2
Исполнение ТС Температура окружающей среды, °С
исполнение без взрывозащиты взрывозащищенное исполнение (Ex ia, Ex d)
без ИП от минус 62 до +120°С

от минус 62 до +95°С (Т4);

от минус 62 до +85°С (Т5, Т6)

без корпуса с удлинительными проводами от минус 62 до +180°С
с ИП от минус 50 до +85°С (в зависимости от применяемого ИП)
с ИП с ЖКИ от минус 40 до +85°С (в зависимости от применяемого ИП)

Выбор наиболее подходящего типа датчика

При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.

Каков диапазон измеряемых температур?

При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).

Рис. 2. Диапазоны измерения температур различными типами термодатчиков

Какова требуемая точность измерения датчика?

Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.

Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?

Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.

Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.

Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.

Быстродействие измерения

Динамическое быстродействие первичного преобразователя может быть важно, если температура технологического процесса меняется быстро и в систему управления необходимо подавать быстро меняющиеся входные сигналы. Первичный преобразователь, установленный непосредственно в технологическую линию, будет иметь большее быстродействие, чем первичный преобразователь с защитной гильзой

Важно отметить, что если никакой защитной гильзы не применяется, чувствительный элемент подвергается воздействию среды технологического процесса и его невозможно заменить, не прерывая потока, для чего часто требуется останавливать технологический процесс и опорожнять технологическую систему. Указания по проектированию на большинстве производств не позволяют использовать первичные преобразователи без защитных гильз

Такие установки гораздо менее безопасны с точки зрения возможной разгерметизации технологических установок, в них возможны более частые выходы из строя первичных преобразователей из-за воздействия неблагоприятных условий технологического процесса, и они часто требуют дорогостоящих остановок технологического процесса для замены отказавшего первичного преобразователя. Применение защитных гильз решает эту проблему.

Но если используется защитная гильза, очевидно, что время реакции увеличивается (быстродействие уменьшается) из-за возрастания тепловой массы узла. Ключом к оптимизации быстродействия является уменьшение массы при сохранении достаточной физической прочности, чтобы узел выдерживал давление технологического процесса и силы, создаваемые потоком среды. Защитные гильзы меньшего диаметра обеспечивают более высокое быстродействие, так как требуется нагревать и охлаждать меньшее количество материала

Также важно правильно установить первичный преобразователь, чтобы добиться высокого быстродействия. Первичный преобразователь должен быть достаточно длинным, чтобы его конец касался дна защитной гильзы для обеспечения хорошей теплопроводности

Диаметр первичного преобразователя также должен быть таким, чтобы он плотно входил в защитную гильзу и воздушный зазор между первичным преобразователем и защитной гильзой был минимален. Кроме того, быстродействие улучшается путем использования подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем. Характеристики измеряемой среды также влияют на быстродействие, особенно ее скорость потока и плотность. Быстро движущаяся среда передает тепло и меняющуюся температуру лучше, чем медленно движущаяся, а более плотные среды (жидкости) являются лучшими проводниками тепла, чем среды с малой плотностью (газы).

Сравнение быстродействия систем измерения температуры, использующих термопару без защитной гильзы или ТС без защитной гильзы в системе с текущей водой показало, что заземленный конец термопары имеет быстродействие примерно в 2 раза выше, чем подпружиненный датчик ТС. При измерениях в потоке воздуха ТС работает несколько быстрее, чем термопара.

Однако эти преимущества существенно нивелируются, если не исчезают полностью, когда первичный преобразователь устанавливается в защитную гильзу. Масса защитной гильзы настолько велика по сравнению с массой первичного преобразователя, что она очевидно оказывает доминирующее влияние на быстродействие системы.

При использовании первичного преобразователя диаметром 6 мм (1/4 дюйма) в системе измерения температуры воды, быстродействие термопары и ТС примерно одинаковое, а при использовании первичного преобразователя диаметром 3 мм, термопара несколько быстрее, чем ТС. При измерении температуры воздуха быстродействие термопар и ТС примерно одинаковое при использовании как 3-миллиметровых (1/8 дюйма), так и 6-миллиметровых первичных преобразователей.

Поскольку в очень малом количестве технологических процессов используются для измерения первичные преобразователи без защитных гильз, изначально присущее термопарам преимущество в быстродействии значительно нивелируется. Вдумчивый разработчик выбирает наилучший первичный преобразователь для данной системы, основываясь на множестве других факторов, и не руководствуется вводящими в заблуждение утверждениями, которые можно слышать так часто: «термопары всегда быстрее, чем ТС».

Монтаж термопары

Импортные термопары устанавливаются точно также, как и отечественные, замена производится своими руками, рассмотрим самый простой метод.

  1. Открутите медную или свинцовую гайку подключения внутри резьбового соединения к газовой линии.
  2. Под монтажным кронштейном на термопаре нужно отвинтить компенсационный винт, который держит трубку на место.
  3. Вставьте новую термопару в отверстие кронштейна. Убедитесь, что система не подключена к газовому или электрическому снабжению.
  4. Нажмите на гайку для резьбового соединения, где медный провод подключается к газовой линии. Убедитесь в том, соединение чистое и сухое.
  5. Плотно закрепите соединение, но не перетягивайте, при необходимости установите керамический уплотнитель или защитные прокладки.

Нужно отметить, что контролер плиты должен быть вмонтирован не слишком сильно, но чтобы руками он не отсоединялся.

Фото – Термопара для печи

При установке медная и стальная труба подачи и отвода топлива или прочих веществ, направлены вниз – это очень важная зависимость.

Концевой выключатель расположен под автоматом контроля безопасности на печи, чуть ниже пленума. Если пленум становится слишком горячим, концевой выключатель отключает горелку. Он также отключает вентилятор, когда температура падает до определенного уровня, после того, как горелка выключается. Если вентилятор работает постоянно, либо контроль вентилятора на термостате был установлен в положение ВКЛ, то выключатель нуждается в корректировке. В первую очередь проверьте термостат. Если элемент был включен, то переведите его в автоматический режим, с предварительной установкой сигнала.

Любая лабораторная система контроля требует настройки. Градуировка или калибровка термопары также может осуществляться самостоятельно.

Для регулировки переключателя, снимите крышку элемента управления. Под ней находится зубчатый циферблат. Есть два указателя на стороне вентилятора. Указатели должны быть установлены около 25 градусов. Установите верхний указатель около 115 градусов по Фаренгейту, а нижний около 90 градусов. Если Вы почувствовали запах газа при выполнении этих работ или включения, нужно проверить утечку и уплотнители. Таким же способом можно заменить кабель и прочие детали системы.

Изготовление осуществляется на специальных заводах. Часто ремонт устройств можно осуществить непосредственно в дилерских центрах. Средняя стоимость термопары pt100 или овен (гильза с хромелем алюминия) составляет от 3 долларов до 6 в Москве. Перед покупкой обязательно проконсультируйтесь со специалистом, какое приспособление Вам необходимо, при потребности Вам будет предоставлена таблица предлагаемой продукции.

Арматура:

Модификация 01

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Рисунок 7

Рисунок 8

Рисунок 9

Рисунок 10

Рисунок 11

Примечание — Защитная арматура в зависимости от конструкции  рассчитана на номинальное давление (PN):

— по рисункам  1,2,3,10        —   6,3 МПа;

— по рисункам 4,5,6,7,8        —  16 МПа;

— по рисунку 9                    —  не нормируется;

— по рисунку 11                        —   32 МПа.

Модификация 02

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Рисунок 7

Рисунок 8

Рисунок 9

Рисунок 10

Примечание — Защитная арматура ТП в зависимости от конструкции  рассчитана на номинальное давление (PN):

— по рисункам  1, 2, 7        —    6,3 МПа;

— по рисункам 3, 4, 5, 6, 8, 9, 10 – не нормируется

Модификация 03

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Рисунок 7

Рисунок 8

Рисунок 9

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

Рисунок 14

Защитная арматура в зависимости от конструкции  рассчитана на номинальное давление (PN):

— по рисункам  1-4,  6-14-   не нормируется;

— по рисунку 5-   10 Мпа

По рисунку 1 допускается ТП как сменные термометрические вставки

Модификация 04

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Рисунок 6

Рисунок 7

Рисунок 8

Рисунок 9

Примечание — Защитная арматура ТП в зависимости от конструкции  рассчитана на номинальное давление (PN):

— по рисункам  1-4           — 4 МПа;

— по рисункам 5,6             — 16 МПа;

— по рисункам 7,8             — 32 МПа:

— по рисунку 9                  — не нормируется

Модификация 05

Рисунок 1

Рисунок 2

Рисунок 3

Примечание — Защитная арматура в зависимости от конструкции  рассчитана на номинальное давление (PN):

— по рисунку  1             — не нормируется;

— по рисунку 2           — 10 МПа;

— по рисунку 3            — 6,3 МПа

Модификация 06

Рисунок 1

Примечание — Номинальное давление (PN) 1  не нормируется

Модификация 09

Рисунок 1 Рисунок 2
Рисунок 3 Рисунок 4
Примечание — Номинальное давление (PN) по рисункам 1-4 не нормируется

ТП допускается использовать как сменные термометрические вставки. 

Температурные датчики. Классификация

Существует несколько основных типов термопар. Их различают по материалу изготовления. Основными материалами, используемыми для температурных датчиков, являются металлы — благородные и неблагородные. Именно их сочетание и стало основой классификации. Вот наиболее распространенные типы термоэлектрических элементов:

  • Тип К: Хромель и алюмель. Диапазон температур (длительно): от 0°С до +1100°С;
  • Тип J: Железо и константан. Диапазон температур (длительно): от 0°С до +700°С;
  • Тип N: Никросил и нисил. Диапазон температур (длительно): от 0°С до +1100°С;
  • Тип R: Платинородий(13 % Rh) и платина. Диапазон температур (длительно): от 0оС до +1600°С;
  • Тип S: Платинородий (10 % Rh ) и платина. Диапазон температур (длительно): от 0°С до +1600°С;
  • Тип B: Платинородий (30 % Rh) и платинородий (6 % Rh). Диапазон температур (длительно): от +200°С до +1700°С;
  • Тип T: Медь и константан. Диапазон температур (длительно): от -185°С до +300°С;
  • Тип Е: Хромель и константан. Диапазон температур (длительно): от -50°С до +800°С;

Типы термоэлектрических элементов

Безусловно, каждый тип термоэлемента используется в различных целях. Дорогие термопары используются в науке и промышленности, а более простые и дешевые идеальны для бытового использования — в газовых котлах или плитах.

Устройство и принцип действия термопары

Известно, что не каждый материал может постоянно находиться в открытом пламени. Как видно из описания типов термоэлектрических элементов, они изготавливаются из нескольких металлов, способных длительное время выдерживать высокие температуры. Когда термопара выходит из строя, газовый котел потребует немедленного ремонта, так как произойдет затухание горелочного устройства. Почему так происходит? Термопара работает вместе с отсекающим электромагнитным клапаном. При нарушениях в работе температурного датчика клапан закрывается, и подача газа немедленно прекращается.

Основной принцип работы термопары — термоэлектрический результат (или эффект Зеебека). Суть этого физического явления заключается в следующем:

  1. Два металла с разными физическими свойствами образуют замкнутую цепь;
  2. Место, где проводники соединены между собой путем качественной спайки, помещается в открытое пламя;
  3. На холодных концах спая возникнет напряжение — разница потенциалов.
  4. Если к ним подключить измерительное приспособление, цепь замкнется и появится электрический ток, напряжения которого будет достаточно для возникновения в катушке электромагнитного клапана индукции, которая пустит газ к запальнику.

Конструкция и принцип действия термопары

В тех случаях, когда вы не можете зажечь газовый котел, запальник тухнет, как только вы отпускаете кнопку подачи газа — можете быть уверены, что термопара вышла из строя.

Для газовых котлов чаще всего используют универсальные термоэлектрические элементы типа К (хромель-алюмель), типа Е (хромель и константан) и типа J (железо и константан). Проводники в защитной оболочке, приварены к холодным концам металлов, а спай закрепляют зажимной гайкой в соответствующее место автоматики котла.

Остальные разновидности термопар в газовых котлах и установках не используются в силу того, что из-за использования дорогостоящих сплавов возрастает цена. А для газовых котлов достаточно хороши свойства простейших сплавов.

Чтобы проверить, как работает термопара, нужно подключить один ее конец к измерительному прибору — мультиметру, а другой нагреть при помощи обычного огня. Если устройство исправно, напряжение будет около 50мВ.

Принцип действия термопары достаточно прост, однако в процессе производства каждый вид термопары проходит калибровку, или, другими словами, корректировку относительно 0оС. Чем точнее измерительный прибор, которым проводят калибровку, тем точнее будет термопара. Кроме этого, добросовестный производитель не позволит себе сделать некачественную пайку металлов термопары. Поэтому старайтесь выбирать изделие проверенного бренда, покупая термодатчик для своего газового котла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector