Оптическое волокно в промышленных системах связи

Подготовка оптического волокна к заводке в муфту перед сваркой: маркировка

Это нужно для того, чтобы не решать потом ребусы. Для маркировки используются наклейки-флажки типа

или обычные наклейки-маркеры на листе. Но обязательно с цифрами от 0 до 9

Но сначала разберемся с модулями. Очищенный до модулей оптоволокнный кабель выглядит на срезе так:

Пустышки мы просто обрезаем, красный с зеленым (второй также может быть синим или желтым, но в любом случае хорошо различимым) может перепутать только дальтоник, а вот белые и бесцветные очень похожи между собой, Перепутать их легко, а ошибка будет стоить нам потраченного зря времени.

Последовательность маркировки следующая:

Красный – первый модуль.

Яркий цветной (синий, желтый или зеленый) – второй модуль.

Следующий за вторым по направлению часовой стрелки или против часовой стрелки – третий модуль. Он может быть любого другого цвета, может быть бесцветным или белым.

После третьего в том же направлении относительно часовой стрелки – четвертый модуль. И так далее.

На этом фото в левом кабеле модули расположены против часовой стрелки. В правом – по часовой: Главное – найти первый и второй, чтобы понять направление повива. И промаркировать их соответствующим образом.

Все предельно просто, но при маркировке нужно быть предельно аккуратным. Иначе волокна перепутаются, мы спаяем их неправильно и получим примерно такую картину: Выкапывать из земли десяток муфт на линии, чтобы проверить каждую и найти ошибку спайки, долго и хлопотно. Поэтому монтажники придумали такую хитрость. Они вскрывают среднюю муфту на линии с ошибкой, сгибают по очереди каждое волокно до образования «затора» сигнала (но не облома волокна!). А в это время на первом и последующем за средней муфтой кроссе проверяют сигнал с помощью тестеров. Если сигнал «теряется» на тех волокнах, на которых и должен (на первом и первом или третьем и третьем, к примеру), значит, ошибка допущена не в этих муфтах, а в какой-то из следующих, то есть последних. Тогда переходят на тот второй участок, который состоит примерно из половины муфт. Задача уже упростилась в два раза – искать нужно в оставшихся, допустим, 4-х муфтах, а не во всех 10-ти.

Типы оптоволоконного кабеля

Сварочные аппараты для оптики работают примерно по одному принципу

Поэтому не будем заострять внимание на какой-то одной модели, старый добрый Фуджикура (Fujikura) или Ilsintech, изучим саму последовательность процесса

У вас может быть даже модель с управлением от смартфона. Но это в корне не меняет технологию работ. Она везде одинакова.

Итак, изначально мы имеем два отрезка кабеля ВОЛС, с которых нужно снять внешнюю изоляцию.

Снимая внешнюю оболочку, делайте это с таким прицелом, чтобы в дальнейшем у вас не возникло проблем с укладкой волокон и модулей в сплайс-кассете, кроссе или муфте.

Ошибка №1
Если кабель при этом долго лежал под открытым небом (без защитной капы), перед разделкой обязательно отрезается около 1м с каждого конца.

Дело в том, что нити в кабеле как губка всасывают всю окружающую влагу. В итоге оптоволокно мутнеет.

И даже если вы идеально сделаете соединение, это все равно в дальнейшем не спасет вас от больших потерь сигнала.

Включаете аппарат и выставляете на нем тип кабеля, который будет соединяться.

Различают одномодовые (SM) и многомодовые (MM) оптические кабеля.

На одномодовых волокнах в основном используется три длины волны (три окна прозрачности):

850нм

1310нм

1550нм

Все зависит от общей длины трассы и используемого оборудования. Кроме того, волокна подразделяют на:

обычные — SM

со смещенной дисперизацией — DS

с ненулевой смещенной дисперизацией — NZ

Внешне их никак не отличить. При сварке чаще всего работают с простыми и со смещенкой. Соединять смещенку и простые волокна не рекомендуется.

Дисперсия[править]

Другой фактор, который искажает сигнал во время передачи — дисперсия, которая уменьшает эффективную пропускную способность передачи. Основные типы дисперсии: модовая дисперсия, хроматическая дисперсия, и поляризационная дисперсия.

Хроматическая дисперсияправить

Волны с разной длиной волны перемещаются с разной скоростью.

Разный показатель преломления для разных длин волн.

⇒ разная скорость.

Поляризационная дисперсияправить

Волны с разной поляризацией перемещаются с разной скоростью.

Многие кристаллы пропускают свет с разной поляризацией по-разному: разная степень затухания и разная скорость.

Модальная дисперсияправить

Разные моды волны перемещаются с разной скоростью.

Мощный уровень и маленькая эффективная область волокна, вызывают нелинейные эффекты. С увеличением уровня мощности и числа оптических каналов, нелинейные эффекты могут стать проблемным фактором в системах передачи. Аналоговые эффекты могут быть разделены на две категории

Описание технологии, конструкция кабеля

Людям, которые хотят подключить интернет по оптоволокну, следует детальнее ознакомиться с конструкцией оптического провода. На самом деле у него довольно простое устройство.

В центральной части располагается стекловолоконный световод диаметром около 7-8 мкм. Он покрыт специальной защитной оболочкой, сделанной из пластика. Она не только защищает световод от механических повреждений, но и обеспечивает внутреннее отражение света.

В процессе передачи данных свет не покидает пределы центральной жилы и не сталкивается с электромагнитными помехами. Именно поэтому такие кабели не нуждаются в дополнительном экранировании.

Надежная наружная оболочка провода защищает его от механических повреждений

Чтобы оптический интернет стабильно работал и не было обрывов связи, оптоволоконный провод делают максимально прочным. Для уплотнения используют кевлар и металл. Благодаря такому надежному бронированию, кабели из оптического волокна защищены от механических повреждений.

Оптические провода могут отличаться по своим конструкционным особенностям:

  • Стеклянное волокно, размещенное внутри оболочки из пластика. Кабель такого типа менее надежный и не очень часто используется во время проведения интернета.
  • Многослойный провод. Он изготавливается с дополнительными упрочняющими компонентами. Подходит для прокладки в грунте или под водой.

Есть и другая классификация, согласно которой оптику можно поделить на два основных типа:

  • Одномодовый. Такие провода изготавливаются из световода диаметром в 1,3 мкм. Одномодовая оптика более качественная и чаще всего используется при подключении интернета в частных домах и квартирах.
  • Многомодовый. От предыдущего типа провода отличается тем, что в нем используется не лазерный, а обычный световод. При этом длина световой волны довольно короткая и составляет всего 0,85 мкм.

Какие имеет ограничения

Оптический кабель подходит для прокладывания под водой

Многих интересует, есть ли у стекловолокна для интернета какие-то ограничения. На самом деле оптические кабели далеко не идеальны и имеют свои недостатки.

Главный минус заключается в том, что они не могут обеспечивать идеальный сигнал. Например, большинство проводов оптического типа обеспечивают максимальную скорость передачи данных 10 Гбит/с только на расстоянии 100-200 км. После этого начинается постепенное затухание сигнала и соответственно ухудшение скорости. Однако пользователи сети Internet этого не замечают.

Дело в том, что оптику прокладывают только до многоквартирного дома. До квартир протягивается обычная витая пара. Это приводит к ограничению скорости. Поэтому, чтобы насладиться максимально быстрой передачей данных, придется проводить оптику напрямую в квартиру и подключать специальное оборудование для оптоволоконного интернета.

Конструкция и материалы

Определившись с тем, что такое оптоволокно, перейдем к описанию его устройства. Чтобы лучше понять структуру оптического волокна, рассмотрим процесс его производства:

  • нагретый кварцевый песок протягивают через сканер, проверяющий диаметр получающейся нити;
  • затем в камеру охлаждения;
  • и наконец в ванну с полимером, который налипает и формирует внешний защитный слой;
  • в конце вертикального конвейера находится бобина, на которую со скоростью 3 км/с наматывается остывшее волокно;
  • его транспортируют на завод, где осуществляется покраска каждой нити, чтобы их затем можно было различить в зависимости от канала передачи данных;
  • на специальном станке из них формируются пучки, которые затем запаиваются в кожух из полиэтилена;
  • пучки пережемаются с армирующим стеклопластиковым стержнем, а затем упаковываются во внешнюю изоляцию. Так формируется строение конструкции оптоволоконного кабеля.

  • сердечник из оптического волокна — самая хрупкая часть кабеля;
  • гидрофобный заполнитель обеспечивает защиту посредством амортизации;
  • эту конструкцию опоясывает центральная трубка;
  • промежуточная полиэтиленовая оболочка обеспечивает дополнительную защиту сердцевины;
  • как правило, в кабеле присутствует броня (существует множество разновидностей);
  • все перечисленные элементы закрывает наружная оболочка.

Выбор WiFi роутера для оптоволокна

При выборе следует смотреть на характеристики, описывающие возможности локальной сети. Если существует возможность, то можно юзать не только беспроводную сеть вайфай, но и порты локальной сети LAN. Согласно практическим исследованиям люди часто отказываются использовать дополнительное провода витой пары в свои квартиры.

Следовательно, нужно рассмотреть стандарты, позволяющие передавать данные по беспроводному подключению:

  • 802.11n — наибольшая скорость на частоте 2.4 ГГц от 300 до 450 Мбит/с;
  • 802.11ac — самая большая скорость в своей частоте (до 2,5 Гбит/секунду).

Если скорость интернета от провайдера не более 100 Мбит/с, то брать двухдиапазонное устройство, но, возможно, это и имеет смысл, когда семья большая, а в доме много устройств по типу видеонаблюдения, телевизора и ноутбуков.

Нет смысла и использовать роутер с входом под оптоволокно, когда скорость равна 100 Мбит/с. Даже если подключение медленнее, оно может вырасти, а устройство не будет пропускать больше, чем заложено в его способности.

Наиболее предпочтительным для покупки будет следующий рейтинг хороших образцов:

  • DIR-615/FB. Дешевый аппарат для оптоволоконных целей, который может позволить себе каждый. Работает на стандарте 802.11n и имеет привлекательный внешний вид. Средняя стоимость его находится в районе 2400 рублей;
  • DVG-N5402GF. Модель от D-link, имеющая ЮСБ порт для подключения внешних устройств, а также высокую пропускную способность до — до 1 Гбит/с. Частота такая же — 2.4 ГГц. Цена соответствующая — приблизительно 8500 рублей;
  • ZTE F660. Чутьли не самый бюджетный вариант, который можно урвать в китайском интернет магазине за 20 долларов. Его внутренние порты могут пропускать 1 Гбит/с и работать на стандартах 802.11b/g/n. Оптика характеризуется 2.488 Гбит/с;
  • TX-VG1530. Производитель TP-link, а это говорит окачестве. Скорость приема составляет до 2.5 Гбит/с, а отдачи — 1.2 Гбит/с. Есть поддержка телефонии VoIP. Средняя цена — 4500 рублей.*

Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).

Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.

Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.

WiFi от оптики, без роутера

Тут имеется ввиду ситуация, что вам оптику провели, подключили к одному и компьютеру, и на это Всё. Кабель брошен, WiFi нет, встает вопрос что делать, если нет денег на обычный роутер. Тут на помощь нам приходят умные программы, дело в том, что современный WiFi адаптер, которые встроен в ноутбук, планшет, телефон или стационарный компьютер, имеет возможность не только принимать входящий трафик с Интернета, но и синхронно раздавать его.

Чтобы раздать WiFi от компьютера или ноутбука, к которому подключена оптика достаточно просто скачать программу MyPublicWiFi (Май Паблик Вай-Фай). Данная программа помогает просто и без заморочек, создать беспроводную точку доступа с вашего компьютера, пару щелчков мыши, и Ваш компьютер превращается в роутер, и вы можете легко подключаться к Интернету со своих мобильных устройств. Как настроить данную программу я описывал в этой статье: Настраиваем Май Паблик Вай Фай

Многие возможно столкнуться с тем, что у них стационарный компьютер без WiFi, но не расстраивайтесь, для Вас так же есть простое и дешевое решение данной проблемы. Все что необходимо сделать, это купить беспроводной WiFi-адаптер, эта плата с антенной или похоже не флешку устройство, которое вставляется в ваш компьютер, и вы получаете возможность подключаться, и аналогично ноутбуку раздавать Интернет, через данный адаптер.

Надеюсь данная статья была полезна для Вас, обязательно оставьте свое мнение в нашей группе в вк на странице обратной связи.

История оптоволоконной связи

Оптоволоконная связь произвела революцию в телекоммуникационной отрасли. Он получил широкое признание у организаторов сетей связи и коммуникаций. Оптическая связь, используя оптоволоконный кабель, позволила установить телекоммуникационные линии на гораздо большие расстояния, с гораздо меньшими уровнями потерь. Это позволило обеспечить гораздо более высокие скорости передачи данных.

В результате этих преимуществ ВОЛС широко используются в основной инфраструктуре магистральной связи, в широкополосных системах Ethernet и общих сетей передачи данных.

С первых дней развития телекоммуникаций постоянно возрастала потребность в передаче большего количества данных. Первоначально использовались однолинейные провода. На смену им пришли коаксиальные кабели, которые позволили нескольким каналам передавать по одному и тому же кабелю. Однако эти системы были ограничены в полосе пропускания.

В 60-70-х годах прошлого века, после ряда открытий (в частности создания лазера), стала возможной оптическая связь — передача электрического сигнала светом.

Сегодня это открытие позволяет передавать данные на большие расстояния со скоростью передачи до 10Тбит/сек.

Сферы применения

Развитие технологии производства волоконно-оптических детекторов позволило не только снизить стоимость этих устройств, но и решить ряд проблем, связанных с невозможностью использования обычных средств тензометрии для определения изменения физических величин в нетипичных условиях. Современные конструкции оптоволоконных детекторов применяются:

  • в системах безопасности и оповещения;
  • для контроля работы плавильных печей;
  • для обнаружения утечек на гидротехнических сооружениях;
  • контроль значений температуры во время различных технологических процессов;
  • в системах оповещения о пожарной тревоге;
  • с целью повышения эффективности использования газовых и нефтяных скважин;
  • для контроля герметичности емкостей для хранения сжиженного природного газа в терминалах и на судах;
  • при обнаружении протекания в трубопроводах и контроля уровня жидкости.

В дальнейшем специалисты прогнозируют развитие технологии таким образом, что закладываемые при строительстве новых сооружений оптико-волоконные системы смогут обеспечивать контроль и поддержание в необходимом диапазоне всех эксплуатационных параметров каждого объекта. Подобный подход может решить проблему моментального оповещения о происшествии и координации вызова экстренных служб.

Нефтедобыча

Использование волоконно-оптических детекторов позволяет повысить средний дебит каждой скважины, обеспечить увеличение продолжительности эксплуатации дорогостоящего насосного оборудования, достигаемого за счет внедрения систем мониторинга и автоматизации процесса. Получаемая с датчиков информация позволяет осуществлять управление процессом в режиме реального времени, своевременно корректировать параметры процесса.

Перспектива развития отрасли состоит в замене активных детекторов состояния объектов на системы пассивного контроля, что в свою очередь приведет к увеличению коэффициента извлекаемости ископаемых видов топлива и позволит снизить удельные затраты энергии на получение конечного объема продукта.

Транспортировка газа

В сфере газотранспортной системы измерение показателей температуры, давления, коррозии и деформации позволяют своевременно проводить упреждающее обслуживание газопроводов для обеспечения надежности ее работы. При этом типе оптоволоконной деформации используется кабель с дифракционными решетками, позволяющие измерять действующие нагрузки в широком диапазоне значений.

Особенности практического использования детекторов в сфере газодобычи показал наличие круглосуточного оперативного доступа для проверки технического состояния отдельных линий магистрали, что в свою очередь позволило снизить количество аварий на единицу длины трубопровода почти в 2,5 раза.

Хранение отработанного ядерного топлива

Остаточная опасность отработанных частиц ядерного топлива предъявляет особые требования к утилизации остатков продуктов распада. К полигону для хранения токсических соединений предъявляются достаточно строгие требования, среди которых необходимость обеспечения устойчивости к действию геохимических и механических факторов, обеспечение эффективности хранения с низкими эксплуатационными расходами в течение продолжительного периода времени, надежность и точность функционирования оборудования.

Значительно упростить процесс организации хранения этого вида отходов может использование чувствительных оптоволоконных элементов для определения температуры, деформации, смещения.

Авионика и автоэлектроника

Устойчивость к электромагнитным помехам, небольшие габариты, способность сохранять работоспособность в условиях повышенных и пониженных температур у этих детекторов оказались востребованы в области автоэлектроники и авионики. Чаще всего в этих сферах применяются датчики углового и линейного положений, температуры и акселерометры. В области авиации эти устройства нашли применение в используемых там гироскопах, работающих на принципе интерферометра кольцевого типа и в системе навигации летательных аппаратов.

Медицина и биотехнологии

В области медицины и клеточных технологий, эти датчики нашли применение благодаря высокой разрешающей способности, небольшому диаметру и пластичности используемого оптического волокна, биологической и химической стойкости устройств.

Особенности и основные преимущества ВОЛС

Волоконно-оптические системы связи в настоящее время получили широкое распространение по всему миру, постепенно вытесняя другие проводные способы передачи данных благодаря своим особенностям и уникальным характеристикам.

Давайте более подробно рассмотрим некоторые ключевые моменты, чтобы понимать, в чем преимущество волоконно-оптической связи:

  • пропускная способность. Это одна из основных характеристик, которая важна для линии связи. Потенциал одного канала позволяет выйти на объем в несколько терабит за секунду;
  • универсальность. По оптическому кабелю можно передавать сигналы различной модуляции;

минимальный коэффициент затухания. Благодаря этому качеству, длина участка сети без использования дополнительных ретрансляторов или усилителей может достигать до 100 километров;

безопасность данных. К волоконно-оптической линии практически невозможно подключится злоумышленнику – в случае физического нарушения целостности канала сигнал перестанет проходить сквозь кабель, а надежное кодирование убережет от перехвата информации при помощи программных средств. Дополнительно система безопасности предупредит о попытке проникновения и взлома. Именно благодаря такой особенности, оптические кабели используют различные организации (правоохранительные органы, банки, исследовательские компании), которые работают с секретными данными;

пожарная безопасность. Благодаря своему строению и используемым материалам, оптико-волоконные кабели не поддерживают горение и не приводят к образованию искры. Это позволяет использовать их на химических, нефтеперерабатывающих и других предприятиях с повышенным уровнем пожарной опасности;

экономическая выгода. Несмотря на то, что стоимость прокладывания линии довольно высокая, она все равно будет дешевле и качественнее, чем традиционное соединение с использованием медного кабеля. Дополнительно стоит учесть минимальные расходы на усилители сигнала, особенно, если речь идет о больших участках магистралей. Для сравнения, ретрансляторы при стандартном подключении должны устанавливаться каждые 5-7 километров, а при использовании оптико-волоконного кабеля – каждые 100 километров;

надежность и долговечность. При использовании соединения в стандартных климатических условиях, срок службы кабеля и соединительного оборудования будет примерно в два раза больше, чем при эксплуатации медного кабеля.

Благодаря этим преимуществам линии связи на основе оптико-волоконных соединений пользуются большой популярностью в наше время по всему миру.

Больше о волоконно-оптических линиях связи и их особенностях проектирования можно узнать на ежегодной выставке «Связь».

Оптико волоконная связьВоздушные линииАппаратура линий связи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector