Операционные усилители. виды и работа. питание и особенности
Содержание:
- Инвертирующий усилитель на ОУ. Принцип работы
- Обратная связь ОУ
- Система функций оборудования
- Чертеж транслятора
- Мост – база модуля
- Примеры применения (схемы включения) усилителя LM358
- Классы работы транзистора в усилителе
- Всего один биполярный транзистор
- Изменение коэффициента усиления – инвертирующий усилитель
- Принцип работы операционного усилителя
- TDA2030 как повторитель напряжения
- Стабилизация рабочей точки транзистора
- АЧХ и ФЧХ неинвертирующего усилителя на LM358
Инвертирующий усилитель на ОУ. Принцип работы
Инвертирующий усилитель является одним из самых простых и наиболее часто используемых аналоговых схем. С помощью всего двух резисторов, мы можем выставить необходимый нам коэффициент усиления. Ничего не мешает нам сделать коэффициент менее 1, тем самым ослабив входной сигнал.
Часто к схеме добавляют еще один резистор R3, сопротивление которого равно сумме R1 и R2.
Чтобы понять, как работает инвертирующий усилитель, смоделируем простую схему. У нас на входе напряжение 4В, сопротивление резисторов составляет R1=1к и R2=2к. Можно было бы, конечно, подставить все это в формулу и сразу вычислить результат, но давайте посмотрим, как именно работает эта схема.
Начнем с напоминания основных принципов работы операционного усилителя:
Обратите внимание, что неинвертирующий вход (+) соединен с массой, то есть на нем напряжение равное 0В. В соответствии с правилом №1 на инвертирующем входе (-) так же должно быть 0В
Итак, мы знаем напряжение, находящееся на выводах резистора R1 и его сопротивление 1к. Таким образом, с помощью закона Ома мы можем выполнить расчет, и рассчитать, какой ток течет через резистор R1:
Чтобы знать, куда дальше течет этот ток, мы должны знать еще принцип действия усилителя:
Таким образом, ток, протекающий через R1, течет далее через R2!
Снова воспользуемся законом Ома и вычислим, какое падение напряжения происходит на резисторе R2. Мы знаем его сопротивление и знаем какой ток через него, следовательно:
Получается, что на выходе мы имеем 8В? Не совсем так. Напомню, что это инвертирующий усилитель, т. е. если на вход мы подаем положительное напряжение, а на выходе снимаем отрицательное. Как же это происходит?
Это происходит вследствие того, что обратная связь установлена на инвертирующем входе (-), и для уравнивания напряжений на входе усилитель снижает потенциал на выходе. Соединения резисторов можно рассмотреть как простой делитель напряжения, поэтому чтобы потенциал в точке их соединения был равен нулю, на выходе должно быть минус 8 вольт: Uвых. = -(R2/R1)*Uвх.
Есть еще один подвох, связанный с 3 правилом:
То есть нужно проверить, что рассчитанные нами напряжения можно реально получить через усилитель. Часто начинающие думают, что усилитель работает как источник свободной энергии и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание. Классические усилители работают от напряжения -15В и +15В. В такой ситуации наши -8В, которые мы рассчитали, являются реальным напряжением, так как находится в этом диапазоне.
Однако современные усилители часто работают с напряжением 5В и ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал нам минус 8В на выходе. Поэтому, при проектировании схем всегда помните, что теоретические расчеты всегда нужно подкреплять реальностью и физическими возможностями.
Необходимо отметить, что инвертирующий усилитель имеет один недостаток. Мы уже знаем, что повторитель напряжения не нагружает источник сигнала, поскольку входы усилителя имеют очень большое сопротивление, и потребляют ток так мало, что в большинстве случаев его можно игнорировать (правило №2).
Инвертирующий же усилитель имеет входное сопротивление равное сопротивлению резистора R1, на практике оно составляет от 1к…1М. Для сравнения, усилитель с входами на полевых транзисторах имеет сопротивление порядка сотен мегаом и даже гигаом! Поэтому иногда может быть целесообразно перед усилителем установить повторитель напряжения.
Читайте далее:
Принцип действия операционного усилителя
Генератор тока на операционном усилителе
Принцип работы усилителя звука
Биполярный транзистор принцип работы для чайников
Полевой транзистор принцип работы для чайников
Обратная связь ОУ
Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.
С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.
Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно. В операционном усилителе все происходит подобным образом
В операционном усилителе все происходит подобным образом.
Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?
Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом и как его контролировать, но для этого нам нужно знать некоторые детали.
Положительная обратная связь, отрицательная обратная связь
Да, в операционных усилителях применяют обратную связь и очень широко. Но обратная связь может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.
Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать. Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.
С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые используют в АЦП (Аналого-цифровых преобразователях).
А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость. В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.
При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.
Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.
Система функций оборудования
Оптимальное воздействие устройства можно получить при поддержке однозначного равенства разработанной диаграммы. Тогда ток спокойного состояния в 2-х приборах, а также колебания будут иметь равномерные параметры, как и сосредоточенность на существующих транзисторных и коллекторных устройствах VT1 и VT2. Следовательно, во время влияния наружных факторов на транзисторные элементы, устойчивость мостового элемента сохраняется, а сосредоточение на выводе сохраняется в первоначальном положении.
При влиянии напряженности на входе на 1 или 2 вх. диаграммы, возникает колебание внутреннего противодействия 1 или 2-х транзисторных устройств и начинается разбалансированность мостового элемента, колебания сосредоточенности на выводе.
В существующих диаграммах довольно сложно создать точное схематичное соответствие, следовательно, чтобы отрегулировать токи в состоянии спокойствия транзисторных устройств применяют микрорезисторы R4’ и R4’’, часто соединенные в единый подстрочный резисторный элемент, имеющий противодействия, которые вычисляются по формуле:
Каскады дифференциальных усилителей способны функционировать с равноценными, с неравноценными выходными и входными концами.
Неравноценным входным элементом считается сигнальный толчок, приходящий на 1 из Вх.1 или Вх.2 и единым выходом.
В случае, когда с выходным концом случается подобное действие – неравноценный выходной элемент – 1 из выходных концов (Вых.1 или Вых.2) и единый выход, одинаковый выходной конец между Вых.1 и Вых.2. выходными концами.
Неодинаковые дифференциальные каскады, как правило, применяются для того, чтобы перейти от неравноценных вариантов к равноценным моделям и обратно.
Чертеж транслятора
Усилительное устройство, созданное на базе вышеуказанной картины, относится к числу разграниченного оборудования, предназначенных для повышения амплитуды 2-х толчков на вводе. Элементарная диаграмма похожего прибора показана здесь:
Диаграмма усилительного устройства.
Микрорезисторы R1 = R7 и R2 = R8 обеспечивают постановку задач величины действия приемников, а R4’, R4’’ и R5 для того, чтобы сбалансировать мостовой элемент. Оптимальная работоспособность диаграммы образуется за счет выдерживания равномерных параметров мостика.
На финишном этапе, когда нет входящего толчка на Вх.1 и Вх.2, установленное сосредоточение на выходном конце станет приравниваться к 0-му показателю, в независимости от динамики колебания питательного ингредиента электрической сети.
Мост – база модуля
При установленных требованиях современности к показателям на сигнальном выходе прибора, размещающихся в границах 0…20 мА, отклонения данных сопоставимы со сведениями питательных блоков контролирующего аппарата. Частотные колебания движения измеряется в частях Герца.
Эксплуатация простых оптических приборов затруднено, благодаря тому что между изобилием устройства встраиваются разделяющие конденсаторные компоненты, которые не пускают регулярный поступающий толчок. Помимо этого, теплообменники могут приносить неточности в выходной толчок.
Для решения аналогичной проблемы допускается выбирать усилительные приборы, сделанные на принципе динамических схем. Действие таких чертежей построены на мосту, имеющей идентичные рычаги.
Схема моста с идентичными рычагами плечами.
Осуществление его вычисляется следующей формулой:
Как итог, при соблюдении необходимых требований, в период смены интенсивности в электрической сети, токовая сила будет по прежнему нейтральной.
Примеры применения (схемы включения) усилителя LM358
Компаратор с гистерезисом
Микросхемы UA741, LM324, LM393, LM339, NE555, LM358
Допустим, что потенциал, поступающий на инвертирующий вход, плавно возрастает. При достижении его уровня чуть выше опорного (Vh -Vref), на выходе компаратора возникнет высокий логический уровень. Если после этого входной потенциал начнет медленно снижаться, то выход компаратора переключится на низкий логический уровень при значении немного ниже опорного (Vref – Vl). В данном примере разница между (Vh -Vref) и (Vref – Vl) будет значение гистерезиса.
Дифференциальный усилитель на LM358
Назначение данной схемы — усиление разности двух входящих сигналов, при этом каждый из них умножается на определенную постоянную величину.
Классы работы транзистора в усилителе
Примем, что на вход усилителя подается синусоидальный сигнал.
Различают классы А, АВ, В, С и D в зависимости от положения начальной рабочей точки (статического режима) и величины входного напряжения. Основными характеристиками этих режимов являются нелинейные искажения и КПД. Работа усилителя в соответствующем режиме поясняется с помощью придаточной характеристики на рисунке:
Uвых.А – действует в течение всего периода Uвх.А. Uвых.В – действует в течение половины периода Uвх.В. Uвых.С – действует в течение интервала, меньшего половины периода Uвх.С.
Класс А подразумевает работу на линейной части характеристики с малым сигналом Uвх и сравнительно большой постоянной составляющей Uвх.п. Нелинейные искажения минимальны. Однако КПД резко превышает 0,35. Применяются в высококачественных линейных усилителях.
Класс В характеризуется работой с большим сигналом Uвх. Захватывается нелинейный участок передаточной характеристики. Форма выходного напряжения искажается (полусинусоида). Однако КПД достигает 80%. Применяется в 2-х тактных усилителях мощности.
Класс С характеризуется тем, что входное напряжение больше, чем в классе В. Выходное напряжение действует в течение времени меньшего, чем половина периода. Режим сопровождается большими искажениями усиливаемого напряжения, но КПД приближается к единице. Применяется в избирательных усилителях и автогенераторах.
Класс АВ является промежуточным между А и В.
Класс D — ключевой (транзистор находится или в насыщении, или в отсечке).
Всего один биполярный транзистор
Самая простая схема для буферизации выходного тока операционного усилителя выглядит так:
Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе
А вот соответствующая схема LTspice:
Рисунок 2 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе в LTspice
Давайте получим четкое понимание идеи этой схемы, прежде чем двигаться дальше. Входной сигнал подается на неинвертирующий вход операционного усилителя, а выход ОУ подключается непосредственно к базе биполярного транзистора. Операционный усилитель и биполярный транзистор могут использовать один и тот же положительный источник питания, но в этом случае мы предполагаем, что доступны два напряжения – источник питания 5 В для маломощных, малошумящих схем и 12 В для мощной части проекта. Значение резистора нагрузки очень низкое, поэтому выходные напряжения более 200 мВ, приложенные непосредственно к нагрузке, потребуют большего выходного тока, чем может обеспечить LT6203. Транзистор, выбранный в схеме LTspice, может работать с токами около 1000 мА, что означает, что он подходит для напряжений на нагрузке до 5 В.
Ключевым моментом этой схемы является соединение обратной связи. Помните «виртуальное короткое замыкание»: при анализе операционного усилителя в схеме с отрицательной обратной связью мы можем предположить, что напряжение на неинвертирующем входе равно напряжению на инвертирующем входе. Уже одно это говорит нам о том, что выходное напряжение (то есть напряжение на нагрузке) будет равно входному напряжению. Но давайте пойдем немного глубже, чтобы убедиться, что мы действительно понимаем, что происходит; виртуальное короткое замыкание – это своего рода суеверие, которое может отвлечь нас от реальной работы операционного усилителя. Операционный усилитель умножает дифференциальное входное напряжение на очень большой коэффициент усиления. Таким образом, с отрицательной обратной связью операционный усилитель быстро достигает равновесия, потому что большие изменения выходного напряжения уменьшают дифференциальное напряжение, которое вызывает эти самые выходные изменения. В этом состоянии равновесия выход стабилизируется при любом напряжении, что устраняет разницу между напряжениями на инвертирующем и неинвертирующем входах – иными словами, операционный усилитель автоматически регулирует свой выходной сигнал любым способом, необходимым для того, чтобы Vвх– было равно Vвх+.
В контексте этой схемы буферизации выходного сигнала операционный усилитель автоматически генерирует любое выходное напряжение, необходимое для того, чтобы сделать напряжение эмиттера биполярного транзистора равным входному напряжению. Подумайте, насколько сложно это было бы в ситуации разомкнутой петли – каким-то образом необходимо было бы рассчитать соотношение между входным и выходным сигналами усилителя, чтобы компенсировать падение напряжения база-эмиттер биполярного транзистора, которое не является ни линейным, ни предсказуемым. Но с операционным усилителем и некоторой отрицательной связью проблема становится тривиальной.
Давайте подкрепим это понимание идеи парой симуляций. Первая не очень захватывающая; она просто подтверждает, что выходное напряжение следует за входным напряжением (график входного напряжения Vin скрыт под графиком выходного напряжения Vout):
Рисунок 3 – График входного и выходного напряжений схемы
На следующем графике показано, что должно быть на выходном выводе операционного усилителя, чтобы обеспечить нужное напряжение на нагрузке.
Рисунок 4 – График входного напряжения схемы, выходного напряжения операционного усилителя и выходного напряжения схемы
Изменение коэффициента усиления – инвертирующий усилитель
Как следует из названия, операционные усилители являются усилителями. Они могут усиливать сигналы с определенным отношением входного сигнала к выходному. Это отношение обычно называется коэффициентом усиления операционного усилителя. В идеальном мире коэффициент усиления операционного усилителя был бы бесконечно высоким – настолько высоким, что он мог бы усилить любой уровень сигнала до любого другого уровня сигнала. В реальном мире это не так, но мы будем считать это фактом, пока анализируем следующую схему: инвертирующий усилитель.
Рисунок 2 – Инвертирующий усилитель
Давайте шаг за шагом проведем эту работу. Во-первых, давайте применим наши два правила для операционных усилителей, чтобы определить некоторые узловые напряжения в этой схеме. Простейшим из них является виртуальное короткое замыкание, где V+ и V- всегда находятся на одинаковом напряжении. Мы видим, что V+ привязан к земле; следовательно, V- также должен быть на земле. Как насчет тока, поступающего в узел и выходящего из узла V-? По закону токов Кирхгофа мы знаем, что сумма всех токов в этом узле должна быть следующей:
\
Поначалу это выглядит так, что для решения могут потребоваться некоторые усилия, так как это уравнение содержит три неизвестных. Но так ли это? Если вы вспомните правила для операционных усилителей, изложенные ранее, вы увидите, что это уравнение простое: входы операционного усилителя не потребляют ток! Поэтому мы знаем, что iV- равен нулю. Затем мы можем привести это уравнение к следующему виду:
\
Поскольку V- привязан к земле виртуальным коротким замыканием, закон Ома позволяет нам заменить эти токи на напряжения и сопротивления:
\
Что при небольшой помощи алгебры возвращает нас туда, где мы начали:
\
Понятно, почему эта схема полезна – она позволяет применять линейный коэффициент усиления к входу и выходу, выбирая (Roc/Rвх), чтобы сформировать любое соотношение, которое вы захотите. У схемы также есть дополнительный бонус, позволяющий вам в значительной мере контролировать ее входной импеданс – так как вы можете выбрать значение резистора Rвх, вы можете сделать его таким большим или маленьким, чтобы соответствовать любому выходному импедансу, с которым вам нужно достичь согласованности!
Зачем нужна резисторная цепь для достижения такого поведения? Чтобы понять это, нам нужно понять немного больше о том, как работает операционный усилитель. Операционный усилитель – это тип усилителя по напряжению. В идеальном случае операционный усилитель обеспечивает бесконечный коэффициент усиления – он может усиливать любое напряжение до любого другого уровня напряжения. Мы можем масштабировать бесконечный коэффициент усиления операционного усилителя, используя резисторную цепь, которая соединяет входной узел, V-, и выходной узел. Подключив выход операционного усилителя к входу, мы используем процесс под названием обратная связь для регулировки выходного напряжения до желаемого уровня. Обратная связь – действительно важная концепция электронной техники и достаточно сложная, чтобы потребовать целую статью, посвященную этой теме. На данный момент достаточно понять базовый принцип, который применим к операционным усилителям: путем подключения выхода к входу вы можете изменить поведение схемы действительно полезными способами.
Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. «от рельса до рельса», а на языке электроники «от одной шины питания и до другой».
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Как вы видите, в данный момент выход «лег» на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
TDA2030 как повторитель напряжения
Для примера рассмотрим микросхему TDA2030, т.к. две другие являются её более мощными собратья. Исходно микросхема разрабатывалась и применяется в усилителях звука. Подавляющее большинство бытовых усилителей, особенно систем 2.1 и 5.1 построено на этой микросхеме. Что логично и понятно — микросхема дешевая и при этом обладает хорошими характеристиками.
Микросхема реализована в пяти-выводном корпусе и требует минимум деталей для работы. При включении по схеме повторителя для нормальной работы требуются только конденсаторы по питанию. Лучше оставить еще и резистор по входу для привязки входа к земле по постоянному напряжению, хотя и он не обязателен.
Стандартная схема включения микросхемы в качестве усилителя звуковой частоты:
В штатном включении микросхемы (показанном выше), предлагаемом дата шитом, коэффициент усиления задается около 20. При этом полоса рабочих частот ограничивается тем же дата шитом в 140кГц. Однако при работе по схеме повторителя напряжения с единичным коэффициентом усиления микросхема может работать до частот в 0,5…1 МГц. По крайней мере микросхема отлично себя проявила, при работе на частоте 100кГц, подаваемой с генератора синусоидального сигнала на мосту Вина, для умощнения выхода которого она и была применена.
Изящно, красиво, а главное — работает. Микросхема солидно греется и желательно применять радиатор с достаточной площадью поверхности. Отлично подойдет радиатор процессора ПК. Однако тепловыделение зависит от режима работы и сопротивления нагрузки. Не рекомендуется включение микросхемы без радиатора.
В авторском варианте микросхема запитанна стабилизированным напряжением ±9Вольт для обеспечения стабильности амплитуды сигнала. Работа микросхемы предполагалась с мощностью 2-3 Ватта, по этой причине стабилизация питания выполнена на кренках 7809 и 7909, способных обеспечивать ток до 1А(при условии наличия радиаторов). Диапазон питающих напряжений для микросхемы TDA2030 составляет ±6 … ±18 Вольт.
Стабилизация рабочей точки транзистора
Серьезный недостаток схемы на рис. 1.(б) состоит в том, что напряжение коллектора в режиме покоя целиком зависит от величины hFE транзистора, в то время как численные значения этого параметра имеют большой разброс у различных экземпляров транзисторов одного типа. Например, при типичном значении hFE для транзистора ВС 107, равном 200, изготовители указывают, что оно может изменяться в пределах от 90 до 450. Изменение hFE сдвигает рабочую точку по постоянному току. Например, если коэффициент hFE равен 100 вместо 200, то при этом потечет ток коллектора, равный 0,5 мА, а не 1 мА, и падение напряжения на RL составит только 2,35 В вместо 4,7 В. Увеличение напряжения на коллекторе в режиме покоя означает, что выходное напряжение в схеме может изменяться в сторону увеличения только на 2 В, а не на 4 В (возможно изменение выходного напряжения в сторону уменьшения до 6 В, но от этого мало пользы, когда положительные приращения ограничены).
Последствия использования транзистора с hFE = 400 еще более серьезны. В этом случае ток коллектора удвоится до 2 мА. Простое вычисление показывает, что все 9 В питания будут падать на резисторе RL. Говорят, что транзистор находится в насыщении. Практически между коллектором и эмиттером остается небольшое напряжение порядка 0,2 В. Любое дальнейшее увеличение тока базы почти ни к чему не приводит; действительно, падение напряжения на RL не может превышать Vcc Поскольку при насыщении транзистора потенциал коллектора фактически равен потенциалу земли, схема теперь не пригодна для линейного усиления: невозможны изменения выходного напряжения в сторону уменьшения.
Возвращаясь к линейному усилителю на рис. 1.(б), можно сказать, что необходимо некоторое усовершенствование схемы, чтобы повысить ее устойчивость к изменениям hFE. Даже если бы у нас была возможность отбирать транзисторы с hFE = 200, а это очень дорого при массовом выпуске схем, hFE увеличивается с ростом температуры, так что схема все равно не была бы надежной. На рис. 2. показано очень простое, но эффективное улучшение. Вместо того, чтобы подключать резистор RB непосредственно к Vcc, мы, уменьшив сопротивление вдвое, подключим его к коллектору (VCE≈Vcc/2). Теперь, благодаря этому, ток базы в режиме покоя зависит от коллекторного напряжения в режиме покоя. Даже при увеличении hFE транзистор не может попасть в насыщение: если коллекторное напряжение падает, то также падает ток базы, «придерживая» коллекторный ток. И наоборот, если hFE уменьшается, коллекторное напряжение в режиме покоя возрастает, увеличивая ток IB.
Ток базы определяется теперь соотношением
IB=VCE/RB
и, как и прежде,
VCE=Vcc-hFEIBRL
Объединяя эти равенства, получим
VCE=Vcc/(1+hFERL/RB)
Если RL и RB имеют значения, указанные на рис. 2, и hFE = 100, то VCE≈6 В; если hFE = 400, то VCE≈3 В. Хотя здесь все еще положение рабочей точки меняется, это не существенно, пока для получения больших сигналов не требуется иметь возможно большие пределы изменения выходного напряжения. Схема, приведенная на рис. 2., будет работать при изменении параметров транзисторов в очень широком диапазоне и является полезным усилителем напряжения общего назначения. Принцип построения схемы с автокомпенсацией изменений hFE является просто примером отрицательной обратной связи, которая представляет собой одно из самых важных понятий в электронике.
АЧХ и ФЧХ неинвертирующего усилителя на LM358
На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:
По оси Y у нас коэффициент усиления, а по оси Х – частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f1. То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.
В проектировании усилителей важен такой параметр, как граничная частота среза fгр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте Kгр
Kгр= KUo / √2 либо = KUo х 0,707 , где KUo – это коэффициент усиления на частоте в 0 Герц (постоянный ток).
Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем Kгр.
Kгр = 10 х 0,707 = 7,07
Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем fгр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.
Также очень просто определить граничную частоту, если построить график в децибелах. Граничная частота будет находиться на уровне KUo-3dB. То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.
Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но как поведет себя усилитель на высоких частотах (ВЧ)?
Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:
Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.
Для наглядности АЧХ и ФЧХ можно разместить на одном графике:
Также в схемах с неинвертирующим усилителем часто вводят компенсирующий резистор RK .
Он определяется по формуле:
и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.
При участии Jeer