Станция для измерения скорости и направления ветра

Несколько советов по применению

До начала работы с устройством нужно тщательно исследовать его элементы управления. У большинства устройств сам принцип функционирования может быть стандартным, но вот обозначения на его регистрирующих модулях и вид конечных предоставляемых результатов может быть различным.

Стоит также ознакомиться с рекомендуемыми производителем условиями эксплуатации – это необходимо в целях исключения рисков преждевременного выхода прибора из строя. К примеру, некоторые изготовители прямо запрещают пользоваться своим продуктом под прямыми лучами ультрафиолета. Всегда необходимо помнить, что ветромер является точным измерительным прибором, и любое внешнее воздействие на него вполне может отразиться на точности выдаваемых результатов. То же можно сказать и про присутствие в замеряемых воздушных массах чрезмерного количества грязи и пыли – данное обстоятельство особо актуально для механических устройств. Таким образом, механический ветромер, до начала производства измерений, должен находиться в состоянии идеальной чистоты.

Одновременно, не следует подвергать анемометры длительным рабочим нагрузкам. И перед началом любого исследования, ветромер следует подвергнуть поверке:

  • Осмотреть его на предмет наличия внешних повреждений;
  • Проверить корректность получаемых данных в щадящих условиях;
  • Протестировать узлы, ответственные за вывод получаемых результатов.

Популярные варианты ветромеров

Крыльчатые

Этот вид прибора является наиболее распространенным и способен выдавать результаты достаточной точности, которые подойдут и для бытового и для промышленного предназначения. Наиболее широко данные модели используются в следующих отраслях:

  • На метеорологических станциях (в целях осуществления наблюдений за изменениями погодных явлений);
  • На аэродромах (для определения возможности осуществления полетов);
  • В системах вентиляции горнодобывающей промышленности (для определения уровня надлежащей выходной воздушной тяги);
  • В строительной отрасли (для измерения силы воздушного потока при работе на высоте, например, в целях определения допустимости производства работ на башенных кранах);
  • В сельскохозяйственной отрасли (для определения возможности обработки посевов защитными химикатами и удобрениями с воздуха).

Устройство лопастных моделей включает в себя три основных блока:

  1. Модуль, ответственный за замеры скорости ветра в состоянии, так называемого, покоя. Проще говоря, модуль улавливает степень возмущения воздушной массы при  прохождении ее через лопасти.
  2. Модуль, ответственный за преобразование, – именно он служит «переводчиком» полученных данных в физические единицы.
  3. Модуль, ответственный за регистрацию, – полученные данные от преобразователя визуально регистрируются для удобства считывания оператором.

Чашечные

Данные ветромеры приспособлены осуществлять измерения лишь в той плоскости, которая прямо перпендикулярна вращательной оси чашей. Традиционно, прибор имеет четыре чаши, выполненные в полусферической форме, расположенные на крестообразной роторной спице и имеющие симметричные габариты. Чашечные ручные устройства способны сосчитать количество оборотов крестовины, совершенных за определенный временной промежуток. Их улучшенные версии также оснащаются еще и тахометрами различных типов, дабы улучшить качество получаемых результатов. Замеры производятся мгновенно в режиме реального времени, и точность измерения оставляет от 0,2 до 30 метров в секунду.

Термические

Их принцип работы заключается в измерении электрического сопротивления на проволочном датчике. Этот показатель изменяется в зависимости от температуры его нагрева, которая понижается в условиях слишком быстрого воздушного потока. Конструктивно представляет собой металлическую нитку накаливания, выполненную из вольфрама, серебра, нихрома или платины (либо иного металла). Данная нитка подогревается посредством электротока до температуры, которая должна превысить текущую температуру окружающей среды. Основный недостаток ветромеров данного типа – их очень слабая устойчивость перед сильными механическими воздействиями.

Ультразвуковые

Их принцип работы основан на замере скорости передвижения звука в неспокойном газовом потоке, что осуществляется на основе законов физической акустики. Таким образом, если звук распространяется в одном направлении с воздушной массой, то скорость его движения увеличивается, и наоборот, когда он противопоставлен направлению движения воздуха – его скорость уменьшается. На основании полученной разницы и замеряется временной промежуток отклика импульса ультразвука.

Данное устройство  является наиболее современным и, как правило, оснащается электронными контроллерами вывода получаемых результатов. Сам датчик способен выполнять несколько функций (в зависимости от своего вида):

  • Двухмерный датчик – выдает данные о направлении и скорости ветрового потока;
  • Трехмерный датчик – сможет определить все три элемента скорости ветра;
  • Четырехмерный датчик – дополнительно к вышеуказанному функционалу может установить еще и температуру воздушного потока.

Ультразвуковые модели способны выдержать скорость ветра до 60 метров в секунду.

Как работают анемометры?

В основе анемометра могут лежать два принципа работы:

  • потоки воздуха создают импульсы и заставляют чашечное колесо или воздушный винт вращаться, образуя электрические сигналы – такой механизм свойственен крыльчатым или чашечным анемометрам;
  • движение воздуха снижает температуру нагретого полупроводника, за счет чего и происходит замер потока тепловыми анемометрами.

В механических анемометрах поток импульсов от оборотов колеса или крыльчатки преобразуется прибором, который выводит эти значения на экране дисплея. Крыльчатки диаметром более 6 см применяются для замеров скорости турбулентных течений при малых и средних показателях скорости. Уменьшенные лопасти крыльчатки подходят для фиксации потоков внутри воздуховода. Ручные анемометры необходимы при расчете расходов воздуха в отверстиях вентиляционных решеток и воздуховодах промышленных и жилых построек.

В электронных термоанемометрах, таких как ТТМ-2/2-06-4Р-2А, скорость воздуха основывается на измерении термического сопротивления нагретого термистора, охлаждаемого воздушными потоками. Чаще всего такие приборы применяются в сферах, где одновременно необходимо измерить скорость потоков воздуха и показатели температуры: в метеорологических учреждениях, на строительных объектах, в шахтах, при работе с системами воздухообмена и кондиционирования, а также при оценке инженерных систем зданий.

Анемометры и термоанемометры выпускаются двух видов: в стационарном и портативном варианте. Стационарные анемометры более громоздки и подходят для регулярного пользования специалистами на станциях и объектах, для индивидуального выездного применения больше подойдут небольшие портативные модели приборов, например ТТМ-2-01 Т.

Изобретение прибора

Потребность в точном измерении скорости и направления ветра существовала у человечества достаточно давно в связи с самыми разнообразными занятиями. Например, такая необходимость существовала у моряков, перемещавшихся на парусных судах, которые хотели спрогнозировать направление и скорость движения своих кораблей.

В результате, стремясь решить эту проблему, в 1450 году итальянец Леон Баттиста Альберти сконструировал первый прообраз современного анемометра, который представлял собой диск, который необходимо было закреплять на оси, расположенной перпендикулярно ветру. Такое положение диска при наличии ветра вызывало его вращение, по которому, в свою очередь, определялась скорость движения воздушных потоков.

Впоследствии исследователи неоднократно предпринимали попытки усовершенствовать эту конструкцию. Так, в 1667 году английский ученый Роберт Гук, занимавшийся естественными науками, создал похожий по принципу работы анемометр, поэтому его иногда неверно называют изобретателем этого прибора.

Отличия между разными типами устройств

Самым главным отличием механического устройства от электронного является то, что для первого потребуется вручную фиксировать обороты, производимые датчиками замера, а затем самостоятельно произвести расчеты по соответствующей формуле. Для электронных анемометров это действие выполнять нет необходимости, т.к. все расчеты производит электронный контроллер. Тем более, электронные варианты обладают повышенной чувствительностью и могут одновременно фиксировать три параметра:

  • Текущую скорость воздушной массы;
  • Ее максимальные порывы в заданный промежуток времени;
  • Осуществить вычисление средних показателей.

Отдельно стоит упомянуть анемометры, чья измерительная часть выполнена в качестве специального зонда и, условно говоря, вынесена за пределы основного корпуса. Подобными аппаратами пользоваться оператору намного комфортнее, ибо непосредственно во время производства замеров можно отслеживать динамику изменения показателей. Данная технология чаще всего применяется на вращающихся моделях и измерительный модуль присоединен к основному корпусу с помощью кабеля. Дополнительное оснащение анемометра электронным контроллером с собственной памятью будет не лишним, когда требуется постоянное сохранение результатов, включая время, место и полученные показатели измерения.

Кто такой Фрэнсис Бофорт?

Фрэнсис Бофорт (1774-1857) – ирландский моряк, военный адмирал и картограф. Он родился в небольшом городке Ан-Уавь в Ирландии. Окончив школу, 12-летний мальчик продолжил свое обучение под предводительством известного профессора Ушера. В этот период он впервые проявил незаурядные способности к изучению «морских наук». В подростковом возрасте он поступил на службу в восточно-индийскую компанию и принял активное участие в съемке Яванского моря.

Следует отметить, что Фрэнсис Бофорт рос довольно смелым и отважным парнем. Так, во время крушения судна в 1789 году юноша проявил огромную самоотверженность. Растеряв всю свою еду и личные вещи, он сумел спасти ценные инструменты команды. В 1794 году Бофорт участвовал в морском сражении против французов и героически буксировал подбитое вражеским огнем судно.

Разнообразие моделей

В зависимости от принципа действия, прибор для измерения скорости ветра изготавливается в трех вариантах:

Механический. За счет движения воздуха в них происходит вращение отдельных элементов. В данную категорию относится анемометр чашечный и крыльчатый (или лопастной). Они отличаются между собой конструкцией элемента, который воспринимает потоки воздуха.

Нагревательные (или тепловые). В их конструкцию входит нагревательный элемент (обычно это простая накаливаемая проволока). Под воздействием движущихся воздушных масс данный элемент остывает. Прибор определяет степень снижения температуры.

Ультразвуковые, которые измеряют скорость движения звука. Звук, проходя сквозь движущийся газ, обладает различной скоростью. Если он движется навстречу ветру, то его скорость будет ниже. И наоборот, при движении в одну сторону с ветром, его скорость будет выше, чем в неподвижном воздухе.

Разновидности приборов для метеорологии, их назначение и принцип работы

Если для сложного моделирования изменений климата используются радары и спутники, то для синоптики подойдут устройства попроще. Но на вопрос, какое бывает синоптическое метеорологическое оборудование, отвечать пришлось бы очень долго, т.к. для разных целей применяется многочисленные виды этих устройств. Рассмотрим наиболее распространенные из них.

Анемометры

Анемометры – это приборы метеорологических наблюдений за изменениями скорости и направления движения воздуха. Принцип их работы состоит в определении:

  • Изменений физических свойств воздушного потока.
  • Действий, которое он оказывает на механическое устройство, помещаемое в него.

Анемометры могут иметь разные приемные устройства и методы измерений. В зависимости от этого их разделяют на:

  • Вращательные. У нас можно приобрести, например, прибор testo 417 со встроенной крыльчаткой.
  • Тепловые. Например, карманный термоанемометр стик- класса-testo 405.
  • Вихревые.
  • Динамометрические.
  • Ультразвуковые.
  • Оптические.

Самыми распространенными являются анемометры вращательного типа, принимающими устройствами у которых могут быть чашки или крыльчатки.

Чтобы правильно выбрать этот прибор, нужно знать диапазон измеряемых скоростей, требования к точности и разрешению

Барометры

В метеорологии барометры используют для измерения атмосферного давления. Но его можно применять также для аттестации рабочих мест и определения высоты полета летательных аппаратов над уровнем моря. Устройство метеорологических приборов этого типа бывает:

  • Жидкостным.
  • Ртутным.
  • Электронным.

Выбирайте барометр у компании Спектраналит

У нас вы можете заказать, например, барометр-анероид М-110. Принцип его работы основан на контроле над изменением размеров коробки с разреженным воздухом под действием давления атмосферного воздуха.

Психометры и гигрометры

Это приборы для измерения таких метеорологических факторов, как влажность воздуха и твердых тел. Психометры проще и надежнее, но работают только с воздухом. А гигрометрами называют более функциональное оборудование.

Психометр представляет собой систему, состоящую из двух независимых друг от друга термометров, «сухого» и «мокрого». Влажность высчитывается методом нахождения разницы между их показаниями. Существует три вида этих устройств:

  • Стационарные. Их термометры крепятся на специальном штативе.
  • Дистанционные. Это промышленное оборудование, работающее на терморезисторах и термометрах сопротивления.
  • Аспирационные. Они считаются самыми надежными, потому что их термометры находятся в специальной оправе. Наша компания с удовольствием предлагает вам сертифицированный психрометр этого типа М-34.

Гигрометры и психометры разного типа

Манометры

Манометры – это устройства, которые применяют для определения, контролирования и регулирования давления жидкости или газа. Их можно использовать как стационарные или экспедиционные метеорологические приборы, а также эксплуатировать в теплоэнергетике, на пищевых, химических и нефтехимических предприятиях.

Принцип работы этого оборудования заключается в уравновешивании давления, которое измеряется, силой трубчатой пружины или двухпластинчатой мембраны.

Манометры, которые используют для измерения атмосферного давления, называют барометрами

Метеометры

Показания метеорологических приборов, которые называются метеометрами, позволяют определять:

  • Атмосферное давление.
  • Влажность и температуру воздуха.
  • Скорость воздушных потоков.
  • Параметры атмосферы в жилых и административных, а также рабочих зонах, например, концентрацию токсичных газов.

Широкая область применения позволила называть метеометры устройствами, контролирующими параметры воздушной среды.

Метеометры разного вида

Надеемся, что мы доступно описали метеорологические приборы: фото позволили вам познакомиться с их внешним видом, а статья – с назначением и характеристиками. Если же у вас остались общие вопросы, или вам нужно подробнее узнать особенности конкретного устройства, звоните нашим менеджерам. Они владеют всей информацией о предлагаемом нашей компанией оборудовании. 

19.07.2021

Анемометр крыльчатый

Данный прибор способен определить скорость движения воздуха, которая находится в интервале от 0,5 до 45 м/с. Кроме того, данное устройство позволяет измерять температуру, которая находится в пределах от минус 50 до плюс 100 градусов.

Конструкция анемометра такова, что ветер воспринимается лопастной крыльчаткой. Это небольшое легкое колесико, которое от механических воздействий защищается металлическим кольцом. Принцип его работы напоминает вентилятор или мельницу. Под действием ветра крыльчатка начинает вращаться. По системе зубчатых колес ее вращение передается на стрелки счетного механизма.

Анемометр ручной устроен так, что счетный механизм расположен рядом с крыльчаткой. За счет этого создается преграда для ветра, тем самым рабочий диапазон ограничивается. Подобные приборы могут измерять скорость ветра, которая не превышает 5 м/с. Данные устройства подходят для измерения потока воздуха в вентиляционных шахтах, трубопроводах, воздуховодах и так далее.

Анемометр крыльчатый цифровой устроен таким образом, что датчик встроен внутрь прибора или является выносным. Благодаря такой конструкции никакой преграды для ветра нет. Поэтому прибор измеряет поток, скорость которого может достигать 45 м/с.

Лучшие бытовые анемометры

Далее представлен рейтинг лучших анемометров для использования в быту и на производстве.

Testo 410-2

Анемометр крыльчатого типа. Кроме основной функции замеряет влажность и температуру воздуха. Способен делать замер воздушного потока до 20 метров в секунду. Прибор имеет минимальную погрешность в 2 %. Пригоден для совершения замеров экспертными комиссиями, на что имеет официальную сертификацию. Преимущества:

  1. Работа в течение 60 часов на одной батарее.
  2. Функция замера температуры и влажности.
  3. Удобный экран с настраиваемой подсветкой.

Данная модель может использоваться на промышленных производствах. Не имеет выносного зонда. Все замеры необходимо производить на месте.

Testo 425

Анемометр теплового типа. Имеет выносной измерительный зонд и кабельное соединение. Очень чувствителен. Способен делать замеры скорости потока до 20 метров в секунду. Из преимуществ:

  1. Германское качество и точность.
  2. Отсутствие сложных настроек.
  3. Хорошо читающийся дисплей.

Этот прибор можно использовать для лабораторных и исследовательских работ.

АТТ-1021

Прибор чашечного типа. Относится к электронным устройствам. Способен вычислять влажность и температуру воздуха. Делает замер при максимальной скорости ветра в 35 метров в секунду. Из преимуществ:

  1. Быстрые расчеты.
  2. Встроенная память.
  3. Функция отключения при отсутствии ветра.

Модель имеет простые настройки, способна сохранять в памяти 100 ближайших значений.

Разнообразие моделей и их классификация

В зависимости от принципа работы и конструктивных особенностей ветромера, они могут подразделяться на электронные, механические и ультразвуковые:

  • Механические – благодаря перемещению воздушных масс в их конструкции происходит вращение отдельных частей (лопастей). К данной категории относятся чашечные и крыльчатые (лопастные) образцы. Между собой они различаются лишь формой элемента захвата поступающего воздуха – это либо лопасть, либо чаша.
  • Нагревательные или же тепловые – в них размещается нагревательный датчик, как правило, представляющий собой обычную проволоку накаливания, которая, в процессе воздействия на нее подвижных воздушных масс, остывает. На основании показателей снижения температуры нагрева датчика и производится замер. Относится к электронным вариантам.
  • Ультразвуковые – у них производство измерений осуществляется на базе определения скорости движения акустической волны. То есть звук, двигаясь сквозь находящееся в возбужденном состоянии газовое облако (воздух), будет иметь различную скорость. Когда он продвигается навстречу ветру, то его скорость понижается. В противоположном случае скорость звука повышается. На основание этого физического явления и осуществляется замер.

Существующая классификация

Помимо прочего, модели анемометров могут быть классифицированы по типу датчика, ответственного за взаимодействие с воздушным потоком. По данному основанию они подразделяются на:

  • Вращающиеся – при взаимодействии с ветром определенные части конструкции начинают вращаться в зависимости от силы последнего;
  • Акустические – способные замерять звуковую скорость;
  • Термические – работающие в пределах разницы температур измерительного элемента;
  • Оптические — сложные устройства, требующие присутствия в движущемся потоке специального объекта, от которого будет отражаться лазерный луч, на основании чего и производится измерение;
  • Динамические – основан на действии принципа трубки Пито-Прандтля, где скорость замеряется на основании разницы в давлении между входящим и выходящим потоками.

Разнообразие моделей

В зависимости от принципа действия, прибор для измерения скорости ветра изготавливается в трех вариантах:

Механический. За счет движения воздуха в них происходит вращение отдельных элементов. В данную категорию относится анемометр чашечный и крыльчатый (или лопастной). Они отличаются между собой конструкцией элемента, который воспринимает потоки воздуха.

Нагревательные (или тепловые). В их конструкцию входит нагревательный элемент (обычно это простая накаливаемая проволока). Под воздействием движущихся воздушных масс данный элемент остывает. Прибор определяет степень снижения температуры.

Ультразвуковые, которые измеряют скорость движения звука. Звук, проходя сквозь движущийся газ, обладает различной скоростью. Если он движется навстречу ветру, то его скорость будет ниже. И наоборот, при движении в одну сторону с ветром, его скорость будет выше, чем в неподвижном воздухе.

Причины образования

Ни для кого не секрет, что ветер существует. Однако почему в некоторые дни ветра нет, в некоторые дни он слабый, в некоторые дни сильный, а в некоторые дни случаются настоящий ураган? Причина заключается в разном прогревании различных регионов суши, вследствие чего в этих регионах наблюдается различное атмосферное давление. Проще всего это показать на примере береговой зоны, где суша всегда нагревается быстрее, чем вода. Как итог воздух над земной поверхностью более горячий и по законам физики, становясь легче, поднимается вверх. Освободившееся место занимает холодный воздух с моря. Если говорить научным языком, то всё это связано напрямую с атмосферным давлением. Воздух всегда движется из области с более высоким атмосферным давлением к области с более низким атмосферным давлением. Если вернуться к примеру выше, то воздух над сушей прогревается быстрее, а значит атмосферное давление падает. Над морем воздух прогревается не так быстро, а значит атмосферное давление падает не так сильно. В результате образуется разброс между показателями. Как только между двумя регионами образуется разница в атмосферном давлении, начинает дуть ветер. Причем, чем сильнее эта разница, тем сильнее ветер.

Анемометры. применение различных видов анемометров

Измерение скорости ветра и воздушных потоков – задача прибора, который называется анемометр. Это название происходит от двух греческих слов: «анемос» – ветер и «метрео» – измерение. Первый анемометр был изобретен в 1667 году английским естествоиспытателем и ученым-энциклопедистом Робертом Гуком.

В зависимости от конструкции, анемометры разделяют на несколько типов.

Самым простым принципом действия обладают чашечные анемометры. Чувствительным элементом в этом типе приборов является вертушка с четырьмя или двумя полыми полушариями (чашечками).

При возникновении ветра давление на внутреннюю поверхность чашечек оказывается больше чем на внешнюю и вследствие этого возникает вращение лопасти. Ось лопасти соединена с измерительным механизмом.

Для определения средней скорости ветра подсчитывается количество оборотов лопасти за произвольный промежуток времени. Мгновенную скорость ветра вычисляет электрический индукционный тахометр, связанный с осью прибора.

Чашечные анемометры применяются в основном для измерения скорости воздушных потоков на открытых местностях (штормовые порывы ветра на море, метеорологические измерения и т. п.) и служат для измерения достаточно больших скоростей ветра (от 1 м/с).

Другой тип анемометра – крыльчатый анемометр – применяется для определения скорости воздуха в трубах, вентиляционных каналах и системах кондиционирования. В крыльчатых анемометрах лопасть заключена в кольцо, которое защищает ее от повреждений.

Лопасть может быть жестко соединена с измерительной частью (в более дешевых вариантах), или иметь контакт с прибором посредством гибкого провода. Это позволяет измерять скорость воздуха в труднодоступных местах. Крыльчатые анемометры более чувствительны, чем чашечные.

Они способны измерять скорость ветра, начиная от 0,1 м/с.

К менее распространенным типам анемометров относятся ультразвуковой анемометр (принцип работы основан на измерении скорости звука между передатчиком и приемником, которая зависит от скорости ветра), тепловой или термоанемометр (измерение перепада температур на измерительной и «вспомогательной» стенках термопары), дифференциальный манометр (преобразование давления воздуха в скорость воздушного потока).

Современные цифровые анемометры оснащены жидкокристаллическим экраном, на который выводится результат.

Скорость ветра для удобства может отображаться в различных единицах измерения (мили/ч, км/ч, футы/мин, м/с, узлы), или по шкале Бофорта – двенадцатибальной шкале, использующейся для приближенной оценки скорости ветра (0 соответствует безветрию, а 12 – урагану).

Некоторые анемометры имеют такую дополнительную функцию как измерение температуры воздушного потока. Более дорогие приборы можно подключать к компьютеру для отображения графиков скорости ветра в режиме реального времени.

При таком разнообразии анемометров иногда бывает сложно определиться с выбором конкретного прибора.

К примеру, для измерения скорости потока непосредственно на вентиляционной решетке лучше всего подойдет крыльчатый анемометр с большим диаметром лопасти (6-10 см). В таком случае размеры лопасти будут сопоставимы с диаметром вентиляционного канала, и потребуется минимальное количество измерений для определения точного результата.

Измерение скорости воздушных потоков в самом воздуховоде можно провести крыльчатым анемометров с малым диаметром крыльчатки (1,6-2,5 см) или тепловым анемометром. Такие приборы используют для измерения небольших скоростей ветра (< 2 м/с).

В этом случае точность измерения будет ниже и потребуется провести больше замеров. Если температура воздушных потоков превышает 80 °С, необходимо использовать крыльчатый анемометр с термостойкими крыльчатками.

С помощью крыльчатых анемометров можно проводить измерения и в засоренных вентиляционных каналах.

Крыльчатые анемометры оказываются очень полезными при измерениях воздушных потоков в офисных помещениях. Большая скорость ветра (> 1 м/с) приводит к появлению сквозняков, что может негативно отразиться на здоровье работников.

Для шахт и рудников применяются специальные рудничные анемометры, которые способны работать во взрывоопасной воздушной среде при высокой запыленности. Они могут переносить повышенную влажность (вплоть до 100%) и значительные перепады температур.

В зависимости от Ваших потребностей Вы всегда можете подобрать для себя наиболее подходящий анемометр, который позволит с легкостью проводить измерения скорости ветра в необходимых для Вас местах.

Оптические анемометры

Ученые-физики, инженеры, задействованные в космических программах, часто прибегают к применению лазерных оптических приспособлений для измерения скорости и направления перемещения воздушных потоков. Работают подобные устройства согласно определению зависимости рассеянного либо отраженного подвижным объектом света от его скорости. Данный способ не предполагает непосредственного воздействия газообразных, твердых либо жидких веществ на элементы измерительного устройства. Сфера применения оптических анемометров крайне широка, начиная с определения направлений перемещения веществ в живых клетках и капиллярах и заканчивая вычислением скорости движения газов в атмосфере.

Эксплуатация лазерных устройств помогает с высокой точностью рассчитывать скорость воздушных потоков вокруг подвижных объектов, в частности, автотранспорта, летательных аппаратов, космических тел. Полученные расчеты дают возможность исследователям, инженерам и механикам разрабатывать наиболее аэродинамические формы при конструировании техники.

Почему движутся воздушные массы?

В течение дня поверхность Земли нагревается. Учитывая разную структуру и особенности верхнего слоя планеты, прогревается она неравномерно:

  • темные объекты больше, чем светлые;
  • вода меньше, чем суша.

Таким образом, поглощенное за день тепло возвращается в атмосферу с разной интенсивностью. К примеру, вода прогревается медленнее суши, и днем тепло с земли поднимается, а холодный воздух с моря перемещается на его место. Ночью происходит наоборот: воздушные массы с остывшей суши передвигаются к более теплой воде. Так происходит потому, что теплый воздух легче и стремится вверх, а холодный — тяжелый и стелется у поверхности Земли. Когда теплый воздух встречается “по дороге” с холодным, образуется перепад температур и возникает ветер. Чем больше разница в температуре, тем он сильнее и порывистее.

Также на движении воздушных масс сказывается вращение планеты вокруг своей оси. Так, на Северной части Земли ветра двигаются в правом направлении. На Южном полушарии ветра предпочитают дуть в левую сторону.

Рис. 2. Ветроуказатель — простейшее устройство для определения скорости и направления ветра, использующееся на аэродромах

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector