Ферменты. считаем

Измерения эффективных доз

В нескольких различных величинах используется одна и та же единица измерения (что может вызвать путаницу):

  • эквивалентная доза представляет собой продукт дозы с помощью , которое зависит от типа ионизирующего излучения  : 1 для Х- лучей, гамма — лучи и бета — лучи, от 5 до 20 для нейтронов в соответствии с их скоростью, и 20 для Альфа . Таким образом, эта мера включает тот факт, что для одной и той же дозы некоторые виды излучения более опасны, чем другие;
  • эффективная доза для органа представляет для каждого органа произведение эквивалентной дозы на который зависит от облучаемой ткани, в диапазоне от 0,01 для мозга до 0,12 для костного мозга . Таким образом, эта мера включает тот факт, что при одинаковой эквивалентной дозе риск выше для некоторых очень радиочувствительных тканей  ;
  • эффективная доза для всего тела является суммой эффективных доз , полученных каждым орган: он представляет (косвенно) здоровье риску ( так называемую стохастическим риском ) , связанную с полученной дозой.

Эквивалентная доза и эффективные дозы измеряются в зивертах  :

Единицы эквивалентной дозы и эффективной дозы
Ед. изм Символ Определение Эквивалентность единицы СИ или размерности единицы СИ Назван в честь:
зиверт Sv 1 Зв = 1 Гр для гамма-излучения Л 2 Т -2 Рольф Зиверт
rem (эквивалент рентгена, США) rem 1 rem = 1 ряд 1 бэр = 0,01 Зв. Вильгельм рентген

Эти были выбраны таким образом , чтобы их сумма равна 1. Таким образом, если субъект подвергается равномерному облучению излучения с 1, эффективная доза в зивертах равна дозе в серых тонах.. Если облучение неоднородно, это правило больше не применяется, но оно дает, по крайней мере, хороший порядок величины.

Эффективная доза является одной из мер, наиболее часто используемых в радиационной защите  : многие пороговые значения определяются в терминах эффективной дозы (максимальный предел, разрешенный для населения, максимальный предел, разрешенный для рабочих), и именно от этих основных пороговых значений « мы почти отклоняемся ». все остальные.

Примеры задач с решением

Пример 1

Задание. Вычислите начальную активность ($А_0$) магния ${}^{27}{Mg}$, имеющего массу $m=2\cdot {10}^{-6}$кг, считая, что все атомы вещества являются радиоактивными. Какая единица измерения будет у полученной величины?

Решение. За основу решения задачи примем формулу:

\

где $N=N_0$- количество атомов изотопа в момент времени равны $t=0\ $c, тогда $A=А_0$. Найдем число атомов предложенного вещества:

\

где $\mu =27\cdot {10}^{-3}\frac{кг}{моль}$ — молярная масса магния; $N_A=6,02\cdot {10}^{23}{моль}^{-1}$ — постоянная Авогадро.

Выразим постоянную радиоактивного распада через период полураспада как:

\[\lambda =\frac{ln2}{T_{{1}/{2}}}.\]

В результате получим:

\[А_0=\lambda N_0=\frac{ln2}{T_{{1}/{2}}}\frac{m}{м}N_A.\]

\=\left[\frac{ln2}{T_{{1}/{2}}}\frac{m}{\mu }N_A\right]=\frac{\left\left}{\left\left}=\frac{кг\cdot {моль}^{-1}}{с\cdot \frac{кг}{моль}}=\frac{1}{с}=Бк.\]

Проведем вычисления $А_0$, учитывая, что период полураспада изотопа магния составляет $T_{{1}/{2}}=$10 мин=600 с:

\

Пример 2

Задание. Какова удельная активность изотопа урана: ${}^{235}_{92}U$? Каковы единицы измерения полученной величины в СИ?

Решение. Сделаем рисунок.

Удельной радиоактивностью изотопов называют величину, равную единице активности массы вещества:

\

Формулу для вычисления $A_0$ возьмем из примера 1:

\[А_0=\lambda N_0=\frac{ln2}{T_{{1}/{2}}}\frac{m}{\mu }N_A\left(2.2\right).\]

Следовательно:

\[A_m=\frac{ln2}{T_{{1}/{2}}}\frac{N_A}{\mu }.\]

Для вычислений величины $A_m$, заметим, что: ${\mu }_U=235\cdot {10}^{-3}\frac{кг}{моль}$, из справочника для урана $T_{{1}/{2}}=7,1\cdot {10}^8$лет=$7,1\cdot {10}^8\cdot 31536000\ (с)$, получаем:

\

Ответ. $A_m=8\cdot {10}^7\frac{Бк}{кг}$

Единицы измерения активности радиоактивных веществ и доз излучения.

Беккерель (Бк) – единица активности радиоактивных веществ, равная одному превращению в секунду.

Кюри (Ku) – единица активности радиоактивных веществ, определяемая как активность препарата данного изотопа, в котором в одну секунду происходит 3,7 ∙ 1010 ядерных превращений (1 Ku = 3,7 ∙ 1010 Бк).

Джоуль на килограмм (Дж/кг) – единица поглощенной дозы излучения, измеряемая энергией в 1 Дж любого ионизирующего излучения, переданная массе облучаемого вещества в 1 кг.

Рад – единица поглощенной дозы излучения, измеряемая энергией в 1 ∙ 10-2 Дж/кг.

Грей (Гр) – единица поглощенной дозы излучения, измеряемая энергией в 1 Дж/кг.

Бэр – единица эквивалентной дозы, под которой понимается поглощенная доза любого вида ионизирующего излучения, имеющая такую же биологическую эффективность, как 1 рад рентгеновского излучения со средней удельной ионизацией 100 пар ионов на 1 мкм пути в воде.

Зиверт (Зв) – единица эквивалентной дозы излучения в системе Си (1 Зв = 100 бэр).

Заключение.

Радиоактивное загрязнение – серьезная экологическая проблема.

Значительная часть территории России подвергалась радиоактивному загрязнению в результате Чернобыльской катастрофы, при авариях на предприятиях ядерно-топливного цикла, при испытаниях ядерного оружия на Семипалатинском и Новоземельском полигонах. Атомные электростанции, исследовательские реакторы, пункты захоронения радиоактивных отходов, места взрывов в мирных целях образуют места повышенного риска. Особую тревогу вызывают места стоянок атомных подводных лодок и судов с атомными двигателями. Значительное количество радиоактивных отходов захоронено в акваториях морей, прилегающих к берегам России.

Особая опасность радиоактивного загрязнения связана как с непосредственным воздействием радиации на организм человека, вызывающим лучевую болезнь разной степени, так и отдаленными последствиями, выраженными как в онкологических заболеваниях, так и на генетическом уровне. Само радиоактивное загрязнение сохраняется длительное время в соответствии с периодами полураспада образующихся радионуклидов:

42Калий – 12,4 часа137Цезий – 30,2 года

222Радон – 3,8 суток65Цинк – 250 лет

131Йод – 8 суток14Углерод – 5568 лет

60Кобальт – 5,27 года239Плутоний – 24400 лет

90Стронций – 28,5 года

Наряду с техногенными источниками некоторая роль в загрязнениях принадлежит месторождениям радиоактивных руд и горным породам с повышенной радиоактивностью. В этом отношении опасны некоторые районы Забайкалья, где находятся главные месторождения урана в России, и действует Приаргунский горно-химический комбинат. Иногда в строительстве используются щебенка и панели из гранитов с повышенной радиоактивностью, что увеличивает значения экспозиционной дозы, иногда в 2 – 3 раза по сравнению с фоном. Сейчас строительные материалы подвергаются более серьезному радиометрическому контролю. При наличии в недрах пород с радиоактивными минералами к поверхности земли по трещинам проникает радон – выделяются так называемые геопатогенные зоны. Скапливаясь в подвальных помещениях и на нижних этажах зданий, радон может оказать негативное воздействие на здоровье жителей.

В местах, подвергшихся сильному загрязнению в результате Чернобыльской катастрофы, в прилегающих областях Украины, Белоруссии и России накопившиеся в почве радионуклиды (преимущественно 137Цезий и 90Стронций) извлекаются растениями. До сих пор, не смотря на радиометрический контроль, зараженные овощи, ягоды и грибы продолжают иногда попадать на городские рынки в центральных районах России.

Единицы измерения активности изотопа

Исходя из выражения (2), единицей активности служит:

Единица измерения активности в системе Международных единиц (СИ) имеет собственное наименование: беккерель (Бк). Один беккерель — единица измерения активности изотопа, равный активности нуклида в источнике, в котором за 1 с происходит один распад. С этой единицей можно использовать все стандартные приставки для обозначения кратных и дольных десятичных единиц.

Другой единицей измерения активности изотопа служит кюри (Ки). Кюри — единица измерения активности нуклида в радиоактивном источнике, которая является внесистемной единицей. Она используется в ядерной физике и медицине. Вещество имеет активность равную 1 Ки, если в нем за одну секунду происходит $3\cdot {10}^{10}$ радиоактивных распадов. С беккерелем кюри связан как:

Данная единица измерения получила свое название в честь П. Кюри и М. Склодовской — Кюри.

Устаревшей единицей измерения радиоактивности изотопа является резерфорд (Рд). 1Рд — это ${10}^6$ распадов изотопов за 1 секунду.

И так, беккерель, кюри и резерфорд — единицы измерения активности источника радиации.

Радиоактивность

Радиоактивностью называют самопроизвольное изменение состава нестабильного атома или его внутреннего строения при испускании элементарных частиц, гамма — квантов или фрагментов ядер. Явление радиоактивности было открыто А. Беккерелем в конце XIX века.

Закон радиоактивного распада был открыт эмпирически Ф. Содди и Э. Резерфордом в 1903 г. В современной записи он имеет вид:

где $N$ — количество радиоактивных атомов; $\lambda $ — постоянная распада. Выражение (1) означает то, что количество распадов за время $t$ пропорционально $N$. Постоянная $\lambda $ измеряется в обратных секундах:

Какой дозиметр выбрать

Чтобы определиться какой дозиметр выбрать, нужно понять, кокой вид радиации для человека представляет опасность и что желательно контролировать в повседневной жизни.

Все виды радиации опасны, но в бытовой сфере и окружающей нас среде, можно столкнуться с действием в основном трех видов радиации — это бета, гамма и альфа излучение. Наибольшую опасность представляет альфа излучение, так как оно наносит живой ткани наибольший урон. Но зарегистрировать альфа излучение сложнее всего, потому что для его измерения, дозиметр должен быть поднесен вплотную к источнику излучения, так как альфа излучение распространяется в пространстве на небольшие расстояния в пределах 2-3 см. Дозиметры способные зарегистрировать альфа излучение, должны иметь отдельный датчик в дополнении к датчику Гейгера-Мюллера. Обычно это специальное окошечко в дозиметре, которое имеет сдвигаемую защитную крышку.

Если позволяют денежные средства, то лучше купить дозиметр способный измерять три вида радиации — бета, гамма и альфа излучение.

Если вы не хотите тратиться на покупку дорогого прибора, то можно приобрести дозиметр-радиометр, измеряющий бета и гамма излучение. Это неплохое начало и возможно поможет вам избежать серьезных проблем со здоровьем. Такой прибор отлично подойдет для измерения общего радиационного фона в помещении и вне его. С помощью данного дозиметра можно проверить на безопасность продукты питания, строительные материалы, автомобиль и любые другие бытовые вещи.

При выборе дозиметра следует обратить внимание на следующие характеристики:

тип используемого детектора — это основной параметр, влияющий на точность и функциональность прибора. Лучше если это будет газоразрядный детектор, например, счетчик Гейгера-Мюллера. Хуже если это полупроводниковый детектор.

виды измеряемой радиации — прибор может измерять как один вид радиации, так и несколько видов. При измерении нескольких видов радиации, измерения могут проводиться одновременно для различных видов излучений, или необходимо будет переключаться с одного вида излучения на другой. Самый простой и распространенный вид дозиметра — это измерение бета излучения. Но лучше, если дозиметр будет способен измерять три вида излучений — альфа, бета, гамма.

погрешность измерения — это величина, которая характеризует точность прибора. Чем меньше погрешность, тем выше точность прибора, соответственно тем он лучше и дороже. Для бытовых приборов погрешность обычно составляет ±25% или ±30%. Для профессиональных дозиметров погрешность уже будет меньше чем ±7%.

диапазон измеряемых величин — это максимальное и минимальное значение радиации, которое способен зарегистрировать прибор

Стоит обратить внимание лишь на нижний порог измерений, он не должен быть выше чем 0,05 мкЗв/ч. Максимально измеряемый уровень радиации у всех дозиметров достаточно высок.

поверка прибора — это отметка в паспорте дозиметра, что он проверен на заводе изготовителе и соответствует заявленным в паспорте техническим характеристикам и производит измерения с заданной точностью

Желательно, чтобы отметка о поверке была в паспорте. В крайнем случае, в паспорте изделия должна стоять отметка ОТК (отдел технического контроля) о приемке изделия.

Остальные характеристики дозиметра влияют на его удобство эксплуатации, внешний вид и выбираются исходя из личных предпочтений.

Для чего нужно покупать дозиметр?

Для чего нужно приобритать дозиметр в бытовых целях, каждый решает сам.

В качестве информации к размышлению, можно посмотреть сюжет любительской видео съемки в городе Крансодаре, который является одним из самых безопасносных городов России
в отношении экологической обстановки. В простом лесном массиве, безобидные на вид предметы (7-я минута видео), излучают радиацию в миллионы раз превышающие безопасную норму. Находясь даже незначительное время в подобной зоне, можно получить дозу, которая с большой вероятностью приведет к крайне негативным последствиям для организма. К сожалению далеко не всегда, возле подобных объектов установлены занки «опасно радиация». Всему виной халатность и безответственность. Поэтому даже прогуливаясь в каком либо месте (фактически любом), человек может и не подозревать, что подвергается мощному радиационному воздействию. А потом удивляться, откуда берутся различные проблемы со здоровьем.

Как конвертировать единицы активности ферментов

Если нужно, то перевести одни единицы в другие можно следующим образом. Попробуем перевести единицы FCC в PhEur

  • Protease 1 HUT ≈ приблизительно 6.5 USP
  • Amylase 1 DU ≈ приблизительно 48 USP
  • Lipase 1 FIP ≈ приблизительно 2.5 LU/FCCLU

Европейские в американские конвертируются так:

  • 1 FIP = 1 PhEur = 1 BP = 1 USP для липазы
  • 1 FIP = 1 PhEur = 1 BP = 4.15 USP для амилазы
  • 1 FIP = 1 PhEur = 1 BP = 62.5 USP units для протеазы

Например, ферментный препарат с активностью протеазы 20000 HUT. Переведём их в европейские единицы

20000 HUT = 20000 × 6,5 = 130000 USP = 130000 ÷ 62,5 = 2080 PhEur

Для амилазы:

8500 DU = 8500 × 48 = 408000 USP = 408000 ÷ 4,15 ≈ 98300 PhEur

Зависимость активности от времени

Активность (или скорость распада), то есть число распадов в единицу времени, согласно закону радиоактивного распада зависит от времени следующим образом:

где

  • NA — число Авогадро,
  • T1/2 — период полураспада,
  • N(t) — количество радиоактивных ядер данного типа,
  • N — их начальное количество,
  • λ — постоянная распада,
  • μ — молярная масса радиоактивных ядер данного типа,
  • m — масса образца (радиоактивных ядер данного типа).

Здесь предполагается, что в образце не появляются новые ядра данного радионуклида, в противном случае зависимость активности от времени может быть более сложной. Так, хотя период полураспада радия-226 всего 1600 лет, активность 226Ra в образце урановой руды совпадает с активностью урана-238 в течение почти всего времени существования образца (кроме первых 1-2 миллионов лет до установления векового равновесия, когда активность радия даже растёт).

Влияние радионуклидов на организм

Радиоактивные изотопы классифицируют на 4 группы в зависимости от места накопления в организме человека:

  • в равной мере распределенные по тканям организма – цезий 134, цезий 137 (радиоцезий), натрий 24
  • аккумулирующиеся в костной ткани – стронций 89, 90, барий 140, радий 226, 224, кальций 40, иттрий аккумулирующиеся в ретикуло-эндотелиальных органах, то есть в красном костном мозге, лимфоузлах, печени, селезенке – церий, прометий, америций, плутоний, лантан
  • органотропные. В щитовидной железе – изтопы йода, в эритроцитах — железо, в поджелудочной железе — цинк, радужной оболочке глаза — молибден.

Радиоактивные изотопы, попавшие в организм человека, становятся причиной остановки роста и деления клеток, приводят к повреждению естественных биохимических циклов, нарушению структурных связей ДНК, деструкции генетического кода. Все это приводит не только к формированию злокачественных опухолей, но и к генетическим изменениям и передаче заболеваний потомкам. Самое большое количество радионуклидов выделено в хлебобулочных изделиях. За ними идет молоко и молочные продукты, а потом овощи и фрукты. Наименьшее количество радиоизотопов находится в мясных и рыбных продуктах. Следовательно, продукты животного происхождения чище растительных. В морской воде меньше радиоактивных элементов, чем в пресной. Минимальное количество изотопов находят в артезианских водах. Существуют ли продукты, которые обладают антирадиационным действием и ускоряют вывод изотопов из тканей организма? Конечно. К таким продуктам относят:

  • яичную скорлупу
  • цитрусовые
  • черноплодную рябину
  • ягоды боярышника
  • облепиху
  • солодку.

Источники

  1. Pancreatic enzyme replacement therapy for pancreatic exocrine insufficiency in the 21st century (Tony Trang, Johanna Chan, and David Y Graham)
  2. Pharmacologist’s review of NDA 20,725
  3. In Vitro Comparison of Physical Parameters, Enzyme Activity, Acid Resistance, and pH Dissolution Characteristics of Enteric-Coated Pancreatic Enzyme Preparations: Implications for Clinical Variability and Pharmacy Substitution (Robert J. Kuhn, PharmD, Sabine Eyting, PhD, , and Andreas Potthoff, PhD)
  4. Drug and Health Products. Pancreatic enzymes
  5. Application for the inclusion of Pancreatic Enzymes in the WHO Model List of Essential Medicines (submitted by Cystic Fibrosis Worldwide)
  6. Enzyme Assay Units
  7. USP Monographs: Pancrelipase
  8. Способ подбора разовой дозы пищеварительного ферментного препарата (Шамычкова Александра Александровна)
  9. Ферментные препараты
  10. Assay Procedure for Lipase

Физическая природа радиоактивности и виды радиоактивных излучений

Изучением радиоактивного излучения также занимался английский физик Эрнест Резерфорд. Он первый поставил эксперимент, который позволил обнаружить сложный состав этого излучения. Ученый собрал установку, изображенную на рисунке ниже.

Резерфорд поместил препарат радия на дно узкого канала в куске свинца. Напротив открытого конца канала он расположил фоточувствительную пластинку. В результате излучение от радия исходила из канала и попадало на эту пластинку. Но ученый расположил магнит так, что излучающимся частицам приходилось проходить сквозь созданное им магнитное поле. Для чистоты эксперимента вся установка помещалась в сосуд с откачанным воздухом (в вакуум).

Если магнит убрать, то на фотопластинке обнаруживалось лишь одно темное пятно напротив канала. Но если вернуть магнит на место, то пучок распадается на 3 части. Причем одна часть первичного потока сохранила свое направление (пятно получилось напротив пластинки), а две другие его составляющие отклонялись в противоположные стороны.

Как это можно объяснить? Известно, что в магнитом поле меняют свое направление движения только заряженные частицы. Следовательно, опыт продемонстрировал наличие электрических зарядом у двух пучков (у одного из них заряд оказался нейтральным, так как направление изменено не было). Узнать знак этих пучков можно, применив правило левой руки. Так, один из них оказался положительно заряженным, а второй — отрицательно заряженным.

Дальнейшие исследования радиоактивного излучения позволили выяснить природу этих видов излучения. Их разделили на 3 вида и дали им следующие названия:

  • Альфа-излучение — поток положительно заряженных α-частиц. Они представляют собой полностью ионизированные атомы гелия (ядра гелия), летящие со скоростью 14–20 тыс. км/с.
  • Бета-излучение — поток отрицательно заряженных β-частиц, или электронов. Они летят со скоростью, приближенной к скорости света (около 0,999c).
  • Гамма-излучение — электромагнитное излучение с длиной волны менее 10-10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов.

В чем же заключается физическая сущность явления радиоактивности? Чтобы ответить на вопрос, нужно провести исследование самого радиоактивного вещества.

Опыты по изучению радиоактивности, проводимые Резерфордом вместе с английским ученым Ф. Содди, дали понять, что во время радиоактивного излучения исходный химический элемент превращается в другое химический элемент. Такое превращение ученые назвали радиоактивным распадом.

Радиоактивный распад — превращение радиоактивного вещества в другой химический элемент, сопровождающееся радиоактивным излучением.

Радиоактивность — самопроизвольное превращение ядер одних химических элементов в ядра других химических элементов, сопровождаемое испусканием различных частиц или ядер.

Виды распадов:

α-распад. Ядро теряет одну α-частицу, в результате чего оно теряет массу, равную 4 атомным единицам массы (а.е.м.). При этом из исходного вещества образуется новый химический элемент, смещенный на 2 клетки к началу периодической системы Менделеева.

Символически α-распад можно записать так:

M.ZX→M−4.Z−2Y+42He

M.ZX — распадающееся радиоактивное вещество с массовым числом M и зарядовым числом Z, M−4.Z−2Y — новый химический элемент с массовым числом (M–4) и зарядовым числом (Z–2), 42He — излучаемая α-частица.

β-распад. Ядро теряет одну β-частицу (электрон), в результате чего он меняет заряд на 1 единицу, а его масса почти не изменяется. При этом из исходного вещества образуется новый химический элемент, смещенный на 1 клетку к концу периодической системы Менделеева.

Символически β -распад можно записать так:

M.ZX→.MZ+1Y+−1e

M.ZX — распадающееся радиоактивное вещество с массовым числом M и зарядовым числом Z, .MZ+1Y — новый химический элемент с массовым числом M и зарядовым числом (Z+1), −1e — излучаемый электрон.

Внимание! Фактически при β-распаде один нейтрон превращается в протон с испусканием электрона. γ-распад

Ядро теряет одну γ-частицу. В результате не образуется нового вещества, и масса ядра практически не изменяется

γ-распад. Ядро теряет одну γ-частицу. В результате не образуется нового вещества, и масса ядра практически не изменяется.

Пример №1. Записать правило α-распада вещества 238.92U.

Для записи формулы используем формулу:

M.ZX→M−4.Z−2Y+42He

Зарядовое число уменьшится на 2: 92–2 = 90. Этому порядковому номеру соответствует вещество торий.

Массовое число уменьшится на 4: 238–4 = 234.

Следовательно:

238.92U→234.90Th+42He

§ 39. Закон радиоактивного распада

При всем разнообразии реакций самопроизвольного (спонтанного) распада ядер в этом процессе наблюдается общая закономерность, которую можно описать математически. Интересно, что зависимость количества распавшихся ядер от времени задается одной и той же функцией для различных ядер, участвующих в распаде. Перейдем к количественному описанию процессов радиоактивного распада.

Большинство изотопов любого химического элемента превращается в более устойчивые изотопы путем радиоактивного распада. Каждый радиоактивный элемент распадается со своей, присущей только ему «скоростью». При этом для каждого радиоактивного ядра существует характерное время, называемое периодом полураспада , спустя которое в исходном состоянии остается половина имевшихся ядер. Таким образом, периодом полураспада называется промежуток времени, за который распадается половина начального количества  радиоактивных ядер. Другая половина ядер превращается в более устойчивые изотопы посредством распада.Отметим, что период полураспада не зависит от того, в каком состоянии находится вещество: твердом, жидком или газообразном. Кроме того, период полураспада радиоактивного вещества не зависит от его количества, от времени, места и условий, в которых оно находится. Поэтому количество радиоактивных ядер «тогда»  и «сейчас»  непосредственно определяет промежуток времени ,  прошедший с момента уменьшения числа ядер от  до .Невозможно точно предсказать, когда произойдет распад данного ядра. Однако можно оценить среднее число ядер, которые распадутся за данный промежуток времени. Таким образом, закон радиоактивного распада является статистическим и он справедлив только при достаточно большом количестве радиоактивных ядер.

Для записи закона радиоактивного распада будем считать, что в начальный момент времени () число радиоактивных ядер . Через промежуток времени, равный периоду полураспада, это число будет , еще через такой же промежуток времени —  (рис. 218). Спустя промежуток времени, равный n периодам полураспада , радиоактивных ядер останется:

(1)

Это соотношение выражает закон радиоактивного распада, который можно сформулировать следующим образом:

число нераспавшихся радиоактивных ядер убывает с течением времени по закону, представленному соотношением (1).

Закон радиоактивного распада позволяет найти число нераспавшихся ядер в любой момент времени. Полученное выражение хорошо описывает распад радиоактивных ядер, если их количество достаточно велико.Приведем экспериментальные результаты, которые показывают, что при малом количестве радиоактивных ядер это выражение неприменимо. На рисунке 219 изображен график распада 47 ядер изотопа фермия , период полураспада которого .  Из рисунка 219 видно, что пока ядер было достаточно много — от 47 до 12, то показательная функция хорошо описывала закон распада. Однако при меньшем числе ядер истинная зависимость существенно отличается от показательной функции.Периоды полураспада некоторых радиоактивных изотопов веществ приведены в таблице 11.

Таблица 11. Периоды полураспада радиоактивных изотопов веществ
Вещество Период полураспада
30,17 лет
5,3 года
8,04 суток
24 390 лет
1600 лет
3,8 суток
700 млн лет
4,5 млрд лет

Впервые процесс радиоактивного распада для измерения промежутков времени был использован в 1904 г. Резерфордом. По отношению концентрации урана и его дочернего продукта распада (гелия) он определил возраст урановой породы. Эта работа положила начало ядерной геохронологии — определению возраста различных минералов Земли по радиоактивным долгоживущим веществам. В дальнейшем исследование процессов ядерного синтеза позволило перейти к ядерной космохронологии, т.е. к определению продолжительных промежутков времени, прошедших с момента образования элементов в масштабах Галактики и Вселенной. В основу ядерной космохронологии положена неизменность «скорости» радиоактивного распада.

В 1927 г. американский ученый Г. Блюмгарт, используя изотоп  , впервые определил скорость кровотока у людей.

В 1934 г. венгерский ученый Дьердь фон Хевеши, используя дейтерий, впервые установил, что в организме человека вода полностью обновляется в течение 14 суток. 

В 1943 г. Дьердь фон Хевеши была присуждена Нобелевская премия по химии «за работу по использованию изотопов в качестве меченых атомов при изучении химических процессов».

 

Примеры

Изотоп Период полураспада Масса 1 кюри Удельная активность (Ки / г)
232 Чт 1.405 × 10 10 лет 9,1 тонны 1,1 × 10 -7 (110000 пКи / г, 0,11 мкКи / г)
238 U 4,471 × 10 9 лет 2,977 тонны 3,4 × 10 -7 (340000 пКи / г, 0,34 мкКи / г)
40 К 1,25 × 10 9 лет 140 кг 7,1 × 10 -6 (7,100,000 пКи / г, 7,1 мкКи / г)
235 U 7.038 × 10 8 лет 463 кг 2,2 × 10 -6 (2160 000 пКи / г, 2,2 мкКи / г)
129 Я 15,7 × 10 6 лет 5,66 кг 0,00018
99 Тс 211 × 10 3 года 58 г 0,017
239 Pu 24,11 × 10 3 года 16 г 0,063
240 Pu 6563 года 4,4 г 0,23
14 С 5730 лет 0,22 г 4.5
226 Ra 1601 год 1,01 г 0,99
241 утра 432,6 года 0,29 г 3,43
238 Pu 88 лет 59 мг 17
137 Cs 30,17 года 12 мг 83
90 Sr 28,8 года 7,2 мг 139
241 Pu 14 лет 9,4 мг 106
3 ч 12.32 года 104 мкг 9 621
228 Ra 5,75 года 3,67 мг 273
60 Co 1925 дней 883 мкг 1,132
210 По 138 дней 223 мкг 4 484
131 I 8.02 дней 8 мкг 125 000
123 I 13 часов 518 нг 1 930 000
212 Пб 10,64 часов 719 нг 1,390,000

Удельная активность радионуклидов

Объем радиоактивного вещества принято измерять не только единицами массы, то есть граммами, миллиграммами, но и уровнем активности. Активность радионуклида – это количество ядерных превращений (распадов) в единицу времени. С ростом ядерных превращений определенного вещества в секунду, возрастает и уровень его активности, а вместе с этим и опасность для человека.За единицу активности в системе СИ принимают распад в секунду (расп/с). Полученную таким образом единицу называют беккерель (Бк). Следовательно, 1 Бк равен 1 расп/с.Однако, наиболее популярной внесистемной единицей активности является кюри (Ки). При этом 1 Ки равен 3,7•1010 Бк, что соответствует уровню активности 1 г радия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector