Схемы подключения светодиодной ленты на 220в
Содержание:
- Рекомендации по размещению оборудования и монтажу LED ленты
- Монтажные работы
- Выбор лампы
- Схема соединения светодиодной ленты и датчика движения
- Выбор лампы
- Самостоятельная сборка
- Сенсорный выключатель своими руками
- Диммер своими руками
- Сенсорные выключатели(С.В.): 1 выключатель на все
- Датчик движения: что это и каков принцип его работы
- Схема и принцип работы
- Применение светодиодных лент
- Подключение светодиодной ленты к сети 220В схема
Рекомендации по размещению оборудования и монтажу LED ленты
Светодиодная система не является системой повышенной надежности и поэтому необходимо монтаж выполнять с учетом возможности ее полного или частичного демонтажа в случае отказа для ремонта.
Светодиодная лента с тыльной стороны покрыта липким слоем, защищенным пленкой. Для закрепления LED ленты на поверхности достаточно удалить защитную пленку и прижать ленту к поверхности. Но если поверхность имеет большую шероховатость, то лента приклеится плохо и со времен может отвалиться. Для надежного крепления на шероховатую поверхность можно предварительно на нее нанести полоску двустороннего скотча, равную ширине ленты, и уже на него приклеивать ленту.
Существуют специальные алюминиевые профили, которые с помощью саморезов закрепляются на стене, и лента приклеивается уже к профилю. К профилям придается пластиковый рассеиватель, позволяющий спрятать светодиоды и сделать световой поток более равномерным. Но стоимость профилей зачастую превышает стоимость самой лены. Специальный профиль можно заменить дешевым , закрепив его на поверхности жидкими гвоздями.
При подсветке потолков LED ленту удобнее всего спрятать за потолочным плинтусом. В зависимости от замысла, светодиоды направляют либо параллельно поверхности потолка или под углом к нему. Для максимального использования светового потока и получения равномерного освещения потолка ленту нужно размещать на расстоянии не менее пяти сантиметров от него.
При освещении витрин, полок или внутреннего объема шкафов необходимо позаботиться, чтобы светодиоды не светили прямо в глаза людей. В противном случае эффект от подсветки будет неполным, а возможно и отрицательным, например в случае подсветки товара в магазине.
В мощных блоках питания часто устанавливают вентиляторы, которые при работе издают акустический шум, который со временем обычно увеличивается. Этот факт надо учесть, если светодиодная система устанавливается в помещении, где шум может стать раздражающим фактором, например, в спальной комнате. В таком случае блок питания выносят в другое помещение, где шум не будет мешать.
Монтажные работы
Процесс монтажа LED-прожектора начинается с выбора места. Выбирая место крепления, учитывают:
- Удалённость от розетки.
- Полноценное освещение требуемого участка, свободное пространство перед фонарём, чтобы его не загораживали деревья, строения и т. д.
- Высота должна быть удобной для людей – не располагать прожектор на уровне глаз и ниже;
- Устройство нужно защитить от дождя и снега навесом.
- Не нужно располагать прожектор в глухом кармане, куда не будет попадать воздух, минимальное проветривание желательно обеспечить.
Если розетки поблизости нет, от осветительного прибора прокладывается кабель.
С заземлением он должен быть трёхжильным и помещаться в гофру или кабель-канал (это необходимые меры предосторожности для работы в условиях атмосферного влияния). К стене провода крепятся скобами
На большие расстояния до отдельностоящего столба, лучше протянуть трос, который хорошо фиксируется при помощи растяжек. Уже к нему крепится питающий кабель.
Сам процесс крепления прожектора к стене или столбу – не вызовет трудностей. Прожекторы снабжены ручкой – кронштейном с отверстиями под крепёж. Прибор прикручивается к поверхности, после чего выставляется удобный угол наклона фонаря.
Для удобного доступа к монтажным отверстиям, лучше предварительно открутить кронштейн от осветителя, закрепить его на стене или столбе, а уже потом навесить фонарь.
Выбор лампы
Светодиодная лента будет выбрана правильно, если учесть ее технические параметры и особенности помещения
При выборе лампы рекомендуется обращать внимание на следующие ее характеристики:
- Радиус действия прибора. Основной параметр при подборе места для монтажа датчика.
- Мощность источника света. Характеристика важна, поскольку определяет яркость и качество света.
- Угол обзора. Максимальный угол обзора составляет 120 градусов, что нужно учитывать при размещении датчика.
- Заявляемый производителем срок эксплуатации.
- Репутация компании-изготовителя.
- Эффективность света, определяемая коэффициентом освещенности. Показатель зависит от мощности прибора и количества световых диодов на ленте.
- Длина ленты. Показатель имеет значение при выборе адаптера, подающего питание на источник света. Рекомендуемое соотношение: на 1 метр длины — 800 мА. При чрезмерном нагревании адаптера понадобится более мощный прибор.
Схема соединения светодиодной ленты и датчика движения
В общем случае, схема подсоединения питания к светодиодной полосе проста:
RGB-лента на схеме обозначает осветительный прибор с возможностью изменения излучаемого спектра цвета.
К одному блоку питания допускается подключение нескольких светодиодных полос, в случае недостаточной его мощности используются несколько преобразователей.
Соответственно подключается и датчик движения — в случае использования множества источников он устанавливается на разрыв общей линии 220 В. Для единого источника тока подсоединение проще — сенсор контролирует провод 12 В, уже от преобразующего блока. Это облегчает и монтаж. Обычно применяются в таком случае провода меньшего сечения, чем для 220 В, а значит, они гибче и легче укладываются в короба.
Применяются так же схемы подключения датчика движения и осветительных полос, в которых используется единый, общий блок питания.
Одним из возможных вариантов улучшения схемы может стать установка ручного выключателя света, параллельно датчику и прерывателя питания сети всей конструкции. Последний нужен для блокирования ее работы при необходимости — к примеру, когда светло, и отдельная работа ламп не нужна.
Существуют модели светодиодных лент, в наборе к которым уже идет датчик движения. К сожалению, при покупке таких, придется отказаться от идеи дальнейшего расширения системы (добавления новых диодов или сенсоров). Пропускная мощность изначально комбинированного устройства рассчитана только на прилагаемый в комплекте источник света.
В качестве дальнейшего увеличения функциональности можно предложить добавить реле времени на входе питания. Оно будет поддерживать функциональность системы только определенные периоды — к примеру, ночью. Разумной заменой использования таймера может стать датчик освещения. Все в комплексе будет работать только когда темно и происходит движение.
Выбор лампы
Светодиодная лента будет выбрана правильно, если учесть ее технические параметры и особенности помещения
При выборе лампы рекомендуется обращать внимание на следующие ее характеристики:
- Радиус действия прибора. Основной параметр при подборе места для монтажа датчика.
- Мощность источника света. Характеристика важна, поскольку определяет яркость и качество света.
- Угол обзора. Максимальный угол обзора составляет 120 градусов, что нужно учитывать при размещении датчика.
- Заявляемый производителем срок эксплуатации.
- Репутация компании-изготовителя.
- Эффективность света, определяемая коэффициентом освещенности. Показатель зависит от мощности прибора и количества световых диодов на ленте.
- Длина ленты. Показатель имеет значение при выборе адаптера, подающего питание на источник света. Рекомендуемое соотношение: на 1 метр длины — 800 мА. При чрезмерном нагревании адаптера понадобится более мощный прибор.
Самостоятельная сборка
Если вы умеете обращаться с паяльником, разбираетесь в электронике и имеете в своем распоряжении все детали конструкции, тогда вы сможете своими руками собрать сенсорный выключатель для подключения к светодиодной ленте, рассчитанный на питание от сети в 220 вольт. Вся сложность здесь заключается в том, чтобы правильно спаять схему. Ниже приведена наиболее простая схема, с которой сможет справиться новичок
Обратите внимание! В схеме конденсатор С3 можно не использовать
Для сборки вам понадобятся такие детали:
Схема для сборки изделия
- два транзистора КТ315;
- сопротивление (на 30 Ом);
- полупроводник Д226;
- простой конденсатор (на 0,22мкф);
- блок питания или мощная батарейка с выходным напряжением 9 вольт;
- электролитический конденсатор (на 100 мкф, 16 В).
Все эти комплектующие следует спаять по указанной выше схеме, поместив ее в подходящий корпус.
Сенсорный выключатель своими руками
Рассматривая сенсорный выключатель в плане самостоятельного изготовления, хотелось бы немного отойти от многочисленных схем, представленных в интернете и сделать его более унифицированным. Простая система включения относительно неинтересна и слабо применима в быту. Причин тут множество, но одна из них – чувствительность простых конструкций к характеристикам сети питания и постоянное возникновение ложных срабатываний из-за других электроприборов. Кроме того, очень хотелось, чтобы схему можно было использовать взамен классического выключателя, но с добавлением возможности регулирования яркости света. То есть, со своеобразными диммерными функциями. При этом крайне нежелательно слишком усложнять структуру схемы.
В результате была выбрана такая конструкция:
Устройство подключается на разрыв линии питания нагрузки через контакты F и 0. Встроенный светодиодный индикатор D1 оповещает о текущем режиме работы. Применяются три контактные сенсорные площадки, в качестве которых способен выступать любой проводник от 3 см². Одна дает сигнал на включение устройства, две остальных регулируют яркость света. Управляющей частью служит микроконтроллер AT90S2313, который может быть легко заменен на ATtiny2313.
Общий список элементов схемы:
Маркировка | Номинал | Примечание | Аналоги |
---|---|---|---|
Конденсаторы | |||
c8 | 0.33 мкФ, 400 В | ||
с7 | 0.1 мкФ, 630 В | ||
с6 | 100 мкФ, 6.3 В | Электролитический | |
с4 | 0.1 мкФ | ||
С1, 5, 9, 10 | 100 пФ | ||
Диоды, стабилитроны | |||
D1 | |||
D2 | диод | ||
D3 | 6.2 В | стабилитрон | |
Резисторы | |||
R1 | 330 Ом | ||
R2, 7 | 1.2 МОм | ||
R3 | 1 МОм | ||
R4 | 3 МОм | ||
R5 | 430 Ом, 1 Вт | ||
R6 | 1.5 МОм | ||
U1 | AT90S2313 | ATtiny2313 | |
Q1 | BT138-800 | семистор | BTB12-800, Q8015R5 |
X1 | 4 МГц | Кварцевый резонатор | |
F1 | 3.5 A | предохранитель |
Диммер своими руками
С диммерами для светодиодной ленты мы более или менее разобрались. Настала пора выяснить, как сделать диммер своими руками, и вообще возможно ли это. Поскольку я не знаю уровня твоей подготовки, остановлюсь на достаточно простой схеме. Она выполнена на доступной элементной базе, но неплохо выполняет функции светорегулятора и войдет в корпус стандартного выключателя.
На транзисторах VT1, VT3 собран классический мультивибратор с изменяемой скважностью, причем правое плечо мультивибратора усилено транзистором VT2, образующим с VT3 двухтактный ключ. Емкости конденсаторов C2 и C3 выбраны такими, чтобы при любой скважности частота генератора составляла 14 кГц
Это исключит мерцание ленты и ее «звон» при низкой яркости. Скважность изменяется при помощи переменного резистора R3.
Мультивибратор нагружен на мощный ключ, выполненный на полевых (MOSFET) транзисторах VT4, VT5, включенных параллельно. Диод VD1 защищает транзисторы от напряжения обратной индукции, которая может возникнуть в питающих СЛ проводах, если они достаточно длинные.
В схеме использованы полевые транзисторы с каналом N-типа. Как быть, если ты нашел похожие с каналом P-типа? Ничего страшного. Саму схему диммера менять не придется, достаточно поменять местами крайние выводы переменного резистора R3 и изменить схему включения VT4, VT5.
Данный прибор обеспечивает регулировку яркости ленты от 10 до 90%, что совсем неплохо для такой простой схемы.
Теперь по деталям. КТ315 и КТ361 – самые распространенные транзисторы у радиолюбителей, и найти их можно почти в любой бытовой аппаратуре отечественного производства 90-х годов. Даже сейчас в магазине «КэТэшки» они стоят пару рублей.
Полевые транзисторы можно выпаять из любой материнской платы неисправного ПК. Если мощность СЛ не превышает 35 Вт, то транзисторы VT4, VT5 могут работать без радиатора. Если мощность будет выше, то радиатор, конечно, понадобится.
Сенсорные выключатели(С.В.): 1 выключатель на все
Выключатели такого типа на рынке присутствует недолго, но уже стали очень популярными. Часто сенсорный выключатель уже идёт в дуэте лентой.
Сначала нужно выяснить, что такое сенсор. Внешний его вид – панель из кристаллов. На ней есть специальная разметка. Бытовые версии предназначены для системы в 220 В.
Такие приборы – это отличные решения для устройства на кухне с применением ленты из светодиодов. Так функциональная поверхность освещается мощно и качественно. Выключатель, присоединённый к ленте, существенно облегчает работу в вечерние и ночные часы. Но для проблемных участков придуман такой пульт:
Пульт
Можно к такому выключателю подключать бра. Также он помогает управлять подсветкой в многоярусных потолках. Разумеется, если там применена лента с одним цветом или разноцветной палитрой. Такой системой удобно управлять с помощью пульта.
Как бы ни был задействован выключатель, следует учитывать, что план подключения может быть различным.
Сенсорный выключатель нетрудно приобрести в магазине, но можно создать своими усилиями. Самостоятельный монтаж такого включателя не сложен. Работы могут проводить на кухне или в ином помещении. Для монтажа на кухне следует задействовать алюминиевый профиль.
Датчик движения: что это и каков принцип его работы
Датчик движения (ДД) представляет собой специальный вид сигнализатора, фиксирующий движение объектов. Его основное назначение – это контроль окружающей среды и автоматический запуск заложенного алгоритма действий при фиксации перемещения в радиусе его охвата.
Существует несколько видов классификаций данного типа приборов. По месту нахождения:
- внутри объекта;
- по периферии;
- по периметру улицы.
По алгоритму действий:
- реакция на движение объектов, на контролируемой территории;
- сообщение о нарушении целостности стекол, балконных конструкций;
- сигнализирование о вторжении через крышу.
По типу сенсора;
- ультразвук;
- микроволны;
- инфракрасные импульсы.
Также возможно комбинирование нескольких типов в одном приборе.
В основе принципа работы датчика лежит реакция на движение или изменение теплового поля, с последующим замыканием силовой цепочки. После этого реализуется один из заложенных алгоритмов. То есть при срабатывании прибора будет подаваться свет, включаться сигнализация или происходить открытие автоматических ворот. Проводные датчики работают от электрической сети, беспроводные – от аккумуляторных батареек.
Данный тип приборов часто применяется для регулировки работы осветительных приборов, подсветки бассейнов, охраны периметра и отдельно стоящих объектов, запуска фонтанов.
Это интересно: Подключение светодиодной ленты для подсветки лестницы от одного кабеля — изучаем по пунктам
Схема и принцип работы
На рынке представлен большой выбор датчиков, реагирующих на движение и позволяющих настроить включение освещения на разных объектах. При покупке таких устройств необходимо учесть наличие нескольких видов.
Инфракрасные
Изделия чувствуют тепло, излучаемое человеческим телом. Основным элементом является сенсор с установленной на него линзой Френеля, реагирующий на приближение тепла и перемыкающий контактную группу.
Принцип действия:
- излучение фокусируется в узкий луч света и направляется к датчику;
- сенсор улавливает сигнал, принимает его и дает команду на срабатывание.
Такие устройства условно делятся на пассивные и активные. В первом случае реагирование происходит на изменение температурного режима, а во втором – срабатывание происходит в случае прерывания сигнала.
Особенности обеих видов — высокая чувствительность к изменению теплового фона, что требует более точной настройки от пользователя.
Недостатки:
- Вероятность ошибочного срабатывания при наличии обогревателя в помещении, что требует долгой и точной настройки.
- Датчик движения уличный может срабатывать от порывов теплого ветра при установке вне помещения.
Инфракрасные изделия являются одним из наиболее простых и доступных вариантов. Для корректной работы на них не должен попадать свет от лампы. Также не желательно наличие в непосредственной близости источников ИК-излучения.
Контактные
Это наиболее простой тип датчика, в котором применяется геркон — контакт, срабатывающий при возникновении магнитного поля.
При открытии дверей происходит замыкание контактной группы, после чего включается освещение.
Схема проста. К батарее подключается геркон, далее контакт подводится к реле, а после этого ко второму полюсу источника питания.
При желании можно врезать в схему выключатель между реле и батарей. Контакт реле после срабатывания подает напряжение на освещение.
Ультразвуковые
Такие датчики работают на принципе приема радиоволн, которые отражаются от приближающегося объекта. В устройстве имеется генератор и прибор, принимающий электрические колебания.
Изделие воспринимает ВЧ ультразвук в пределах 20-60 кГц
Несмотря на неспособность уха воспринимать такие колебания, при использовании прибора важно учитывать не только человеческие возможности, но и наличие в помещении животных. Собаки чувствуют такие частоты и могут раздражаться при их появлении
В основе работы лежит эффект Допплера. Волна, которая излучается генератором, отражается от объекта и попадает в приемник. При таких обстоятельствах длина волны остается неизменной. Датчик выявляет сигнал и дает команду на срабатывание реле. После этого подается сигнал на включение освещения.
Преимущество таких датчиков в том, что они не воспринимают посторонние шумы, исходящие от промышленных или бытовых объектов. Также они не реагируют на тепловое излучение, которое исходит от приборов, и не бояться изменения погодных условий.
Но во избежание ложного срабатывания не рекомендуется применять УЗ датчики в помещениях с сильными температурными перепадами или изменением влажности. Учтите, что ряд материалов пропускают ультразвук, что может привести к ложной работе.
Микроволновые
Такие датчики работают на базе эффекта Допплера. В устройстве взаимодействует генератор, излучающий микроволновые частоты и приемный механизм. Устройство, контролирующее движение, срабатывает при искажении длины волны.
По особенностям и функциональному наполнению эти узлы похожи на ультразвуковые устройства. При этом частота излучений составляет 2,2 ГГц.
Микроволновые датчики отличаются высоким уровнем чувствительности и позволяют «рассмотреть» человека даже за стеклом или дверью, что нередко приводит к ложной сработке. Эту особенность необходимо учесть в процессе настройки.
Недостаток таких датчиков в высокой цене и весьма сложной схеме.
Лазерные или фотодатчики
В таких датчиках предусмотрен ИК светодиод и приемный элемент (фотодиод, работающий в определенном спектре).
Применяется два варианта реализации:
- Излучающее и принимающее устройство крепятся в контролируемой области. При прохождении человека излучение прерывается и не достает до приемника. В этом случае работает датчик и реле. Такая схема подходит для реализации системы сигнализации.
- Оба элемента стоят друг возле друга. При нахождении в зоне работы датчика луч отражается и попадает на фотодиод. Такое исполнение нашло применение в робототехнике.
Подобный вариант редко применяется для управления освещением, но игнорировать его не стоит.
Как подключить проходной выключатель по схеме: одноклавишный, двухклавишный, как обычный, схемы, критерии выбора
Применение светодиодных лент
В паре с датчиком движения светодиодные ленты (LED-ленты) применяются для освещения отдельных участков помещений, где не требуется постоянное наличие света. Например, для освещения подъездов многоквартирных домов, дворов частных домов в темное время суток, производственных помещений, уборных и туалетных комнат. Также отличным решением станет подсветить светодиодной лентой столешницу на кухне
Светодиодные ленты обладают повышенной экономичностью и долговечностью, например лента длиной 1 метр с количеством светодиодов на метр 60 штук потребляет мощности питания всего 4.5 — 5 Ватт. При такой мощности LED-лента длиной 10 метров будет потреблять 1,2 кВт*час в месяц.
Подключение светодиодной ленты к сети 220В схема
Чтобы запитать светодиодную ленту от сети обычной бытовой сети переменного тока 220В 50Гц нужно выполнить три условия:
- преобразовать переменное напряжение сети в постоянное;
- выровнять уровни напряжений: снизить сетевое напряжение до 12В или изменить схему подключения светодиодов, чтобы на них можно было подавать высокое напряжение;
- стабилизировать параметры электрического питания.
Проще всего использовать готовый блок питания для светодиодной ленты 12В, он рассчитан на безопасное напряжение. Но в применении этого блока питания есть и минусы: он стоит денег и собрать его не так просто, кроме того из-за низкого напряжения светодиодные ленты не стоит располагать далеко от блока питания, для компенсации потерь напряжения придется использовать толстые провода.
Второй вариант: переделать светодиодную ленту и вместо последовательно-параллельного включения светодиодов использовать последовательное.
При такой схеме включения светодиодная сборка питается малым током, но при большом напряжении. Кроме того, если пожертвовать гальванической развязкой, то схема драйвера питания сильно упрощается.
Внимание!!! Схемы без гальванической развязки от сети можно применять там, где нет опасности поражения электрическим током, например в сухом помещении на потолке
- Самое интересное, что схему подобного драйвера можно сделать из деталей отслуживший свой срок энергосберегающей лампочки!
- Рассмотрим подключение светодиодной ленты к сети 220В схема приведена на рисунке.
Таблица номиналов элементов схемы:
- C1 – 2,2 мкФ 400 В
- R1 – 1,3 кОм
- R2 – 4,3 кОм
- R3 – 47 Ом
- VD1 .. VD4 – 1N4007
- VT1, VT2 — 13002
На схеме можно выделить три узла:
- выпрямитель переменного напряжения и фильтр на элементах C1, R1, VD1 – VD4;
- стабилизатор тока на R2, R3, VT1, VT2;
- сборка из светодиодов HL1 – HLN.
Про работу выпрямителя можно почитать здесь. В данной схеме кроме диодного моста из 4-х диодов добавлены токоограничивающий резистор R1 защищающий от бросков тока, фильтрующий конденсатор C1.
При подаче на вход данного выпрямителя сетевого напряжения 220В / 50Гц, на выходе выпрямителя (на конденсаторе С1) появиться постоянное напряжение равное примерно 300В с пульсацией частотой 100Гц.
Чем больше будет емкость конденсатора, тем меньше будет пульсация.
Светодиоды требуют питания стабилизированным током, часто их питают стабилизированным напряжением через резистор ограничивающий ток, например как в светодиодных лентах. Но зачем нам идти на компромиссы, если сделать стабилизатор тока, работающий при больших напряжениях проще, чем стабилизатор напряжения. Работа схемы стабилизатора тока рассматривалась тут.
Такой участок подключается параллельно куче других таких же участков и все это подключается к 12 В.
На каждом диоде падает напряжение от 3,3 В до 3,6 В, таким образом на токоограничивающий резистор остается около полутора Вольт.
Чтобы повысить напряжение участки из трех диодов включаем последовательно с друг другом, а резистора можно выпаять, закорачивать или заменять перемычками, т.е
как будет удобнее с точки зрения топологии.Внимание!!! Соблюдайте полярность, при ошибка в полярности подключения светодиода при таком напряжении будет для светодиода фатальной
Ток которые протекает через тройку светодиодов можно примерно посчитать, разделив полтора Вольта на сопротивление токоограничивающего резистора. То есть при сопротивлении 150 Ом, ток через светодиоды составит 10 мА.
Именно такая лента со светодиодами на 10 мА попалась мне, для неё и были рассчитывать параметры драйвера. Если нужно уменьшить ток, то придется пропорционально увеличивать значение сопротивления резистора R3.
При сетевом напряжении в 220 В, описанная схема способна обеспечить последовательное подключение до 25 групп из трех диодов или 75 единичных. Если напряжение в сети часто бывает пониженным, то лучше снизить количество групп светодиодов до 20 или даже 15.
А вот и плата от энергосберегающей лапочки, откуда можно получить нужные радиоэлементы.
Лампочка разбилась, а плата осталась в рабочем состоянии.
Кстати полярность подключения диодов, выводы транзисторов можно срисовать прямо с этой платы, все что нужно там помечено.
Добываем элементы из этой платы и собираем новую схему.
На фото видно, что транзисторы в маломощном корпусе TO-92 такой корпус не рассеет мощность больше 600 мВт. И суммарная мощность схема с таким транзистором не позволит отдавать в нагрузку более пары Ватт.
Если потребуется собрать схему для более мощной нагрузки, то транзистор VT2 должен быть в более мощном корпусе и желательно с радиатором.