Точечные, многоточечные и линейные тепловые извещатели: проектирование по новым нормам сп 5.13130
Содержание:
- Пожарная сигнализация в многоквартирных домах
- Размещение ручных устройств
- Двойной контроль площади ИПДА
- Изменение №5. Схема расстановки пожарных извещателей и алгоритмы работы.
- Требования нормативных документов
- Установка автономных пожарных извещателей
- Вечная тема: 1, 2, 3 либо 4? Пожарные извещатели для одного помещения
- Аспирационные дымовые извещатели (п. 6.6.23)
- Линейные дымовые извещатели
- Количество датчиков на помещение
- Расстояние от светильников (п.п. 6.6.36, 6.6.37)
- Класс теплового пожарного извещателя
- Аспирационные дымовые извещатели
- Двойной контроль каждой точки
- Установка одного адресного пожарного извещателя
- Двойной контроль площади ИПДЛ
- Что такое пожарные извещатели, чем регламентируются
- Количество в зависимости от площади
- Методы обнаружения пожара
- “Цифровые” линейные извещатели
- Линейные тепловые извещатели (п. 6.6.5)
Пожарная сигнализация в многоквартирных домах
Ясно, что жилье – не производственный объект. Требования к пожарной безопасности здесь иные, нежели в промышленности.
Да, квартиры тоже оборудуются системами ПС.
Для новостроек установка пожарных датчиков застройщиком давно стала обязательной. Многоэтажные дома, помимо квартир, имеют датчики в:
- технических комнатах;
- общих коридорах,
- лестничных клетках;
Устройство управления сигнализацией обычно размещают в комнате консьержа.
Если такого помещения в доме нет, оборудование ПС можно установить в шкафу связи.
Главное условие – не должно быть доступа посторонним к соединительным шлейфам управляющего устройства с датчиками сигнализации.
Если жилой комплекс включает несколько многоэтажек, то от центрального прибора управления из диспетчерской до всех приборов ПС прокладываются коммутационные линии.
Кроме ПКП в состав оборудования может входить один либо несколько:
- устройств управления шлейфом;
- оборудования, управляющего противодымной защитой, противопожарными насосами.
Размещение ручных устройств
Ручные пожарные извещатели не реагируют самостоятельно на пламя или дым. Они активируются только человеком.
Размещаются на стенах на расстоянии 1,4 – 1,5 м. от пола. Вблизи приборов не должны находиться никакие другие электрических приборов или магниты.
Место установки должно быть открытым и доступным для всех: холлы, коридоры, лестничные пролеты, выходы из здания. В тоннелях, ручные пожарные извещатели размещаются около выходов, входов, разветвлений.
Оптимальное расстояние между приборами, установленными внутри здания, определяется в 50 м, снаружи – 150 м. Вблизи установки не менее 75 см не должно располагаться никаких других предметов, преграждающих доступ к извещателю.
Освещенность возле прибора – 50 лк.
Двойной контроль площади ИПДА
Для обеспечения двойного контроля аспирационными дымовыми извещателями в простейшем случае используется расстановка труб через одну с распределением воздухозаборных отверстий по двум решеткам 9 х 9 м. Причем первая труба также располагается на расстоянии 0,5 м от стены, расстояние между первыми двумя трубами – 4 м, между остальными – по 4,5 м (рис. 10).
Рис. 10. ИПДА с двойным контролем защищаемой площади
При увеличении числа воздухозаборных отверстий в два раза расстояния между трубами могут быть увеличены до 6 м (рис. 11).
Рис. 11. ИПДА с увеличенным числом отверстий
Естественно, данные варианты допускаются при расположении труб ИПДА на расстоянии от перекрытия до 900 мм. Это ограничение особых проблем не создает, поскольку при расположении труб на большем расстоянии можно использовать капилляры или ответвления труб для забора проб воздуха на требуемой высоте. Проблемы при проектировании ИПДА возникают при большом числе отверстий и при большой длине труб. Защита высотных складов высотой 40 м требует длину трубы порядка 38,5 м, только чтобы дойти до потолка. Как правило, в рекламных материалах производители ИПДА приводят максимальные длины труб для класса С со временем транспортировки 120 с, а для ИПДА класса А время транспортировки должно быть в два раза меньше – 60 с, и длины труб значительно сокращаются.
Кроме того, в большинстве ИПДА используются центробежные вентиляторы, что определяет снижение величины разрежения при увеличении воздушного потока, то есть при увеличении числа воздухозаборных отверстий. Например, если при минимальном уровне воздушного потока 13 л/мин разрежение составляет 400 Па, то при увеличении воздушного потока до 46 л/мин оно снижается до 375 Па, а при воздушном потоке 130 л/мин падает до 280 Па. Дополнительные ухудшения аэродинамических характеристик ИПДА с центробежными вентиляторами вызывают резкие изменения направлений воздушного потока и величины сечения воздушного канала при прохождении через дымовой сенсор. Лучшие характеристики имеет ИПДА с осевым вентилятором и прямым воздушным каналом с плавным изменением сечения, у которого величина разрежения превышает 1000 Па и практически не снижается при увеличении воздушного потока примерно до 180 л/мин.
Аэродинамический расчет показывает, что при высоте помещения 40 м, исходя из времени транспортировки по классу А 60 с, для одной трубы без разветвлений с воздухозаборными отверстиями через 4,5 м при разрежении 375 Па максимальная длина трубы равна 81,25 м: 38,5 м – вертикальный участок и 42,75 м – горизонтальный участок с 10 воздухозаборными отверстиями при суммарном воздушном потоке 46,1 л/мин. При использовании ИПДА с осевым вентилятором с величиной разрежения 1050 Па длина горизонтального участка увеличивается до 69,75 м (общая длина трубы – 108,25 м) с 16 воздухозаборными отверстиями при суммарном воздушном потоке 80 л/мин.
Таким образом, введение в действие требований СП 484.1311500.2020 в общем случае расширяет область применения аспирационных дымовых извещателей и сужает область применения линейных дымовых извещателей.
Изменение №5. Схема расстановки пожарных извещателей и алгоритмы работы.
Кардинальные изменения коснулись схем расстановки пожарных извещателей. В новых правилах появился пункт 6.6.5, согласно которому каждая точка помещения, должна контролироваться извещателем. Таким образом если раньше схема расстановки извещателей выглядела примерно так:
Рис.7. Старая схема расстановки пожарных извещателей согласно СП 5.13130.2009.
то теперь, согласно новым требованиям, схема расстановки пожарных извещателей должна выглядеть так:
Рис.8. Новая схема расстановки пожарных извещателей согласно СП 484.1311500.2020.
то есть, согласно нового СП, каждая точка помещения должна контролироваться пожарным извещателем, а это значит, что для защиты помещений необходимо будет использовать больше извещателей, для того чтобы они могли перекрывать зоны действия друг друга и контролировать каждую точку защищаемой площади.
Также на схему расстановки и на выбор типа извещателя, который должен контролировать то или иное помещения, влияют новые алгоритмы принятия решения о пожаре. Предусмотрено 3 алгоритма принятия решений – А, В и С.
Рис.9. Новые алгоритмы принятия решения о пожаре.
Согласно данных алгоритмов, также регламентируются и изменения в расстановке извещателей. Данные изменения регламентирует раздел 6.4 СП 484.1311500.202.
Алгоритмы принятия решения о пожаре
6.4.1. Принятие решения о возникновении пожара в заданной ЗКПС должно осуществляться выполнением одного из алгоритмов: A, B или C. Для разных частей (помещений) объекта допускается использовать разные алгоритмы.
6.4.2. Алгоритм A должен выполняться при срабатывании одного ИП без осуществления процедуры перезапроса. В качестве ИП для данного алгоритма могут применяться ИП любого типа, при этом наиболее целесообразно применение ИПР.
6.4.3. Алгоритм B должен выполняться при срабатывании автоматического ИП и дальнейшем повторном срабатывании этого же ИП или другого автоматического ИП той же ЗКПС за время не более 60 сек, при этом повторное срабатывание должно осуществляться после процедуры автоматического перезапроса. В качестве ИП для данного алгоритма могут применяться автоматические ИП любого типа при условии информационной и электрической совместимости для корректного выполнения процедуры перезапроса.
6.4.4. Алгоритм C должен выполняться при срабатывании одного автоматического ИП и дальнейшем срабатывании другого автоматического ИП той же или другой ЗКПС, расположенного в этом помещении.
При использовании адресных автоматических ИП и получении сигнала «Неисправность» от одного или нескольких адресных автоматических ИП в помещении допускается формировать сигнал «Пожар» при срабатывании одного адресного автоматического ИП.
При использовании безадресных автоматических ИП, подключённых в разные, но взаимозависимые линии связи одной ЗКПС, в случае наличия извещения о неисправности одной линии связи или нескольких из них допускается формировать сигнал «Пожар» при срабатывании одного безадресного автоматического ИП.
6.4.5. Выбор конкретного алгоритма осуществляет проектная организация при условии, что алгоритмы A и B могут применяться только для ЗКПС, которые не формируют сигналы управления СОУЭ 4 — 5 типов и АУПТ. Сигналы управления СОУЭ 4 — 5 типов и АУПТ могут быть сформированы от ЗКПС при выполнении алгоритма A, если в данной ЗКПС установлены только ИПР.
Требования нормативных документов
Для того чтобы произвести расчет количества для каждого вида пожарных извещателей в зависимости от площади защищаемых помещений квартиры, жилого дома, определить места, порядок их установки специалисты проектных, специализированных монтажных организаций руководствуются требованиями следующих противопожарных норм:
В этом документе указано, что трехэтажные здания такого назначения при условии передачи тревожного сообщения о возникновении пожара на пожарный пост/пункт могут защищаться автономными дымовыми датчиками или другими извещателями, имеющими аналогичные параметры.
Места установки – во всех помещениях, за исключением кухонь, душевых, ванных, туалетных комнат. Минимально допустимое количество автономных дымовых датчиков – 1 на каждый этаж, а также ими защищаются гараж, вспомогательные помещения при доме.
- СП 54.13330.2016 – для жилых многоквартирных зданий, при наличии задания на проектирование, автономные, питаемые по шлейфам сигнализации дымовые, тепловые датчики устанавливаются в жилых помещениях квартир, за исключением туалетов, душевых, ванных комнат, саун; в помещениях технического назначения, общего использования, в мусоросборных камерах.
- В СП 5.13130.2009, определяющем проектирование установок сигнализации, тушения пожаров, в части решения этих задач даются следующие указания:
Установка автономных пожарных извещателей
Перед тем, как определить точки, где устанавливаются , необходимо рассчитать их количество, необходимое в конкретном помещении. Обычно на каждые 30 м2 площади используется отдельный прибор, но значения могут варьироваться в зависимости от технических условий. Предпочтительней автономные устройства монтировать на потолок, учитывая следующие параметры:
- дистанция от устройства до потолка не должно быть более 0,3 метра;
- наиболее чувствительное устройство монтируется на расстоянии 0,1 метра от перекрытия;
- если потолочная конструкция состоит из модулей, рекомендуется установка на каждом из них, при расчетах осуществляется процентовка площади в зависимости от конфигурации;
- на многоярусных потолках целесообразно размещать приборы на каждом ярусе.
Следует избегать участков, на которые попадает прямой солнечный свет, зоны, соседствующие с приточной вентиляцией. В последнем случае требуется измерения скорости воздушных потоков, она не должна превышать 1 м/сек. Так же правила установки датчиков пожарной сигнализации автономного типа запрещают угловое размещение.
Вечная тема: 1, 2, 3 либо 4? Пожарные извещатели для одного помещения
Сколько пожарных извещателей, каких типов и для формирования каких сигналов должно быть в одном помещении?
А.М. Омельянчук
Начальник КБ компании «СИГМА-ИС»
Вопрос о количестве пожарных извещателей в одном помещении в последнее время считается почти неприличным. Специалисты морщатся или смеются, но от вопроса уходят, обычно выдав шутку, дескать, ставь 4 – лучше перебдеть. Или начинают рассуждать о том, как надо бы изменить СП5, чтобы все было правильно и понятно. С другой стороны, практики-проектировщики вынуждены сейчас делать проекты на основе существующего СП5.
Не претендуя на полноту охвата возможных ситуаций, постараюсь изложить практические рекомендации на основе уже накопленного опыта жизни с техрегламентом и новыми сводами правил.
Аспирационные дымовые извещатели (п. 6.6.23)
Значительно расширяется область применения аспирационных извещателей. Максимальная высота защищаемого помещения для аспирационных извещателей класса А увеличена до 30 м, класса В – до 18 м. Для класса С максимальная высота защищаемого помещения определена такая же, как для дымовых точечных извещателей – равная 12 м, что совершенно справедливо. Кроме того, допускается защита аспирационными извещателями высокостеллажных складов высотой до 40 м, правда, в два уровня: на высоте не более 30 м (под ярусами стеллажей) извещателями не ниже класса B и под перекрытием извещателями класса А.
Так же расширен диапазон расстояний от уровня перекрытия до воздухозаборных отверстий: минимальное расстояние не регламентируется, что позволяет использовать капиллярные комплекты с плоской насадкой вровень с потолком, а максимальное расстояние равно 0,9 м, т.е. в 1,5 раза больше по сравнению с дымовыми линейными и точечными извещателями. Радиус зоны контроля воздухозаборного отверстия равен 6,37 м, независимо от класса аспирационного извещателя и от высоты защищаемого помещения. На незначительное расхождение с величиной радиуса точечного извещателя можно не обращать внимания, поскольку в пункте 5.22 проекта СП сказано, что численные значения, регламентируемые в настоящем своде правил, могут быть увеличены, но не более чем на 5%.
Линейные дымовые извещатели
Для дымовых линейных извещателей ширина защищаемой зоны определена как в СП 5.13130.2009 равная 9 м без изменений (п. 6.6.18). Максимальная высота защищаемого помещения так же остается равной 21 м, но исключено требование о размещении линейных извещателей в два яруса при высоте помещения более 12 м. Также исключена необходимость подтверждения расчетом возможность размещения линейных дымовых извещателей ниже 0,6 м от перекрытия. В этом случае расстояние между оптическими осями извещателей должно составлять не более 25 % от высоты установки извещателей и от стены – не более 12,5 % (рис. 4) . Таким образом в помещении выстой 21 м можно располагать линейные извещатели ниже ферм на высоте, допустим 18 м, с расстояниями между извещателями 18 х 0,25 = 4,5 м. Т.е. при двойном количестве извещателей, как при двух ярусах, но без подтверждения каким-либо расчетом. Одновременно запрещается установка линейных дымовых извещателей на сэндвич-панели.
Рис. 4. Расстановка линейных дымовых извещателей на нижнем уровне
Данная расстановка линейных дымовых извещателей определена исходя из модели распространения дыма от очага изображенной на рис. 5. Дым от очага, за счет конвекции, поднимается вверх, угол конуса распространения дыма принимается равным 22°. Соответственно, на высоте Н радиус площади, заполненной дымом, будет равен 0,2Н, соответственно диаметр равен 0,4H. Таким образом, оси линейных дымовых извещателей располагаются на расстояниях меньше диаметра распространения дыма на высоте H, что гарантирует обнаружение восходящего потока дыма.
Рис. 5. Распространение дыма в помещении
Количество датчиков на помещение
Общее количество датчиков должно быть определено исходя из того, что всё помещение должно находиться под охраной от последствий возгорания. Как показывает практика, в помещении обычно устанавливается не менее 2-3 извещателей. конкретное число определяется в зависимости от выбранной системы пожаротушения. Если для включения защиты достаточно срабатывания одного, то устанавливают, обычно, два — они дублируют друг друга, являясь друг для друга резервными устройствами. Некоторые системы включаются только после срабатывания двух — в таком случае в помещении должно быть установлено их не менее трёх единиц. Один остаётся резервным, два других запускают систему в случае необходимости.
В некоторых случаях устанавливается один извещатель — это допустимо исходя из специфической конфигурации помещения — например, узкий, не длинный коридор, тамбур и т.д.
Существуют определённые условия, которые должны быть выполнены при установке единственного в помещении извещателя:
- площадь помещения не превышает размеры, которые могут быть охвачены данным датчиком — внимательно читайте сопроводительную техническую документацию.
- мониторинг помещения осуществляется автоматически, в случае прерывания защиты, извещатель незамедлительно передаёт данные на центральный пульт.
- предусмотрена идентификация неисправного датчика при задействовании устройств визуализации с центрального пульта.
- единственный в помещении датчик не посылает исполнительный сигнал, инициирующий включение систем дымоудаления и пожаротушения.
Количество на площадь
Для определения точного количества адресных пожарный извещателей, необходимых в помещении, нужно следовать специально подготовленным рекомендациям.
В первом описанном выше случае датчики должны располагаться на расстоянии, не превышающем 9 метров, во втором расстояние сокращается до 8,5 метров. Чем выше потолок, тем меньше охраняемая площадь и ближе друг к другу датчики — это нужно учитывать, обеспечивая безопасность складского помещения, к примеру. План охранной системы может корректироваться, чтобы полностью удовлетворить техническим параметрам извещателей в каждом конкретном случае.
Расстояние от светильников (п.п. 6.6.36, 6.6.37)
Требование о минимальном расстоянии 0,5 м от извещателей до близлежащих предметов и устройств, до электросветильников заменено на минимальное расстояние от извещателей до выступающих на 0,25 м и менее от перекрытия строительных конструкций или инженерного оборудования должно составлять не менее двух высот этих конструкций или оборудования (рис. 4). Таким образом, расстояние до не выступающих светильников регламентироваться не будет, т.е
на врезные светильники при расстановке извещателей можно будет не обращать внимание.
Рис. 4. Расстояние извещателя до балки
Расстояние от извещателей до инженерного оборудования и до строительных конструкций, выступающих от перекрытия на расстояние более 0,25 м, а так же до стен должно быть не менее 0,50 м. Причем указано, что расстояние между извещателем и объектом, препятствующим распространению дымовых и тепловых потоков в помещении (балки, выступы, оборудование инженерных систем, выступающие светильники, вентиляционные отверстия и т.п.) следует измерять по кратчайшему пути от центра извещателя до ближайшей точки объекта.
Класс теплового пожарного извещателя
В проекте свода правил определено, что “выбор класса тепловых пожарных извещателей следует производить в соответствии со значениями условно нормальной и максимальной нормальной температуры окружающей среды в зоне контроля извещателя”. Классы тепловых извещателей A1, A2, A3, B, C, …, H и соответствующие им условно нормальная, максимальная нормальная и температура срабатывания определены в ГОСТ Р 53325–2012 (см. табл.). Например, при нормальной температуре +25 °С и максимально нормальной температуре +50 °С должны выбираться тепловые извещатели класса А1 с температурой срабатывания от +54 до +65 °С.
Аспирационные дымовые извещатели
Радиус зоны контроля воздухозаборного отверстия равен 6,37 м независимо от класса аспирационного извещателя и от высоты контролируемого помещения (п. 6.6.23)
На незначительное расхождение с величиной радиуса точечного извещателя можно не обращать внимание поскольку в пункте 5.22 сказано: «Численные значения, регламентируемые в настоящем своде правил, могут быть увеличены, но не более чем на 5%». Таким образом, максимальный радиус зоны контроля может быть увеличен до 6,688 м максимум
Отверстия в трубах аспирационного извещателя можно располагать по квадратной или по треугольной решетке (рис. 2, 3). Кроме того, при увеличении числа отверстий в трубах можно значительно увеличить расстояния между трубами. Например, если отверстия расположить через 4,5 м, то при радиусе зоны контроля 6,4 м, расстояние между трубами можно увеличить до 12 м, расстояние от стены – до 6 м (рис. 6).
Рис. 6. Расстановка труб и отверстий аспирационного извещателя
В п. 6.6.23 для аспирационных извещателей класса А максимальная высота защищаемого помещения определена равной 30 м, для класса В – 18 м, для класса С – 12 м, т.е. такая же максимальная высота помещения, как для точечных дымовых извещателей, что логично при равной чувствительности. Для сравнения в СП 5.13130.2009 для аспирационных извещателей класса А максимальная высота равна 21 м, для класса В – 15 м, для класса С – 8 м. Кроме того, в п. 6.6.23 определена возможность защиты аспирационными извещателями высокостеллажных складов высотой до 40 м, в два уровня: на высоте не более 30 м (под ярусами стеллажей) извещателями не ниже класса B и под перекрытием извещателями класса А. Так же расширен диапазон расстояний от перекрытия до воздухозаборных отверстий: минимальное расстояние не регламентируется, что позволяет использовать капиллярные комплекты с плоской насадкой, а максимальное расстояние равно 0,9 м, т.е. в 1,5 раза больше по сравнению с дымовыми линейными извещателями. Таким образом, значительно расширяется область применения аспирационных дымовых извещателей по сравнению с дымовыми линейными извещателями.
В п. 6.6.32 определены области размещения воздухозаборных отверстий аспирационных извещателей в ЦОД, правда с необходимостью выполнения на уровне «разрешается»: на решетках входа горячего воздуха в системы прецизионного кондиционирования (рис. 7), в местах выхода горячего воздуха из активного оборудования (рис. 8), под перекрытиями изолированных «горячих» коридоров, в местах входа горячего воздуха в установки межстоечного кондиционирования (рис. 9, 10), на воздухозаборных решетках систем вытяжной вентиляции из расчета одно отверстие на 0,4 м2, то есть так же, как это определено в NFPA 76. Расстояние от воздухозаборных отверстий до воздухозабора (вентиляционного отверстия) должно регламентироваться величиной допустимой скорости воздушного потока в соответствии с техническими характеристиками аспирационного дымового извещателя. Кроме того, если блок аспирационного дымового извещателя устанавливается вне защищаемого помещения, то рекомендуется предусмотреть возврат проб воздуха в защищаемое помещение (п. 6.6.24).
Рис. 7. Контроль на входах горячего воздуха в системы прецизионного кондиционированияРис. 8. Контроль на выходе горячего воздуха из активного оборудования
Сравнительно недавно появились прецизионные кондиционеры, которые встраиваются в ряд стоек, они обеспечивают забор воздуха из горячего коридора по всей его высоте одновременно, например, на рис. 9 прецизионные кондиционеры отмечены красным фоном. При таких условиях, в отличии от традиционных горячих коридоров, образуются не вертикальные, а горизонтальные воздушные потоки и контроль воздушной среды в верхней части горячего коридора становится неэффективным. Чтобы обеспечить возможность обнаружения задымления на выходе любого блока в стойке, перед входами горячего воздуха в межстоечные кондиционеры располагаются трубы с большим числом отверстий, по 8 – 10 отверстий на каждую трубу (рис. 10). Для исключения влияния воздушных потоков в горячем коридоре, воздушный поток через каждое отверстие повышается в 2 раза по сравнению с обычным помещением, примерно до 4 л/мин. При этом суммарный воздушный поток ИПДА при 40 отверстиях возрастает до значительной величины, порядка 160 – 170 л/мин. Чтобы исключить перепад давления на входе и на выходе аспирационного извещателя, установленного вне горячего коридора, необходимо выходной воздушный поток вывести обратно в горячий коридор.
Рис. 9. Межстоечные кондиционеры выделены красным цветомРис. 10. ИПДА с трубами на входах межстоечных кондиционеров
Двойной контроль каждой точки
Для реализации алгоритмов принятия решения о возникновения пожара А и В с использованием безадресных извещателей и для реализации алгоритма С с применением безадресных и адресных извещателей каждая точка площади помещения должна контролироваться минимум двумя извещателями. Из этого следует, что минимальное число безадресных извещателей в помещении в любом случае равно двум, тогда как минимальное число адресных извещателей равно двум только для алгоритма С, а для алгоритмов А и В – одному.
Кроме того, точечные извещатели рекомендуется размещать на максимально возможном расстоянии друг от друга. В случае расстановки извещателей по квадратной решетке максимально возможное расстояние до четырех ближайших извещателей равно 2,83 м (рис. 3). При этом дублирующие извещатели (выделены синим цветом) также образуют квадратную решетку, сдвинутую на полшага по обоим координатам относительно решетки с основными извещателями. Расстояния между извещателями в рядах – 4 м, между рядами – 2 м со сдвигом извещателей от ряда к ряду на полшага (рис. 3).
Рис. 3. Контроль площади двумя извещателями по квадратной решетке
В случае расстановки извещателей по треугольной решетке максимально возможное расстояние до ближайших извещателей также равно 2,83 м. Но если в случае квадратной решетки каждый извещатель располагается на равном расстоянии от четырех извещателей (рис. 3), то в случае треугольной решетки – на равном расстоянии от трех извещателей (рис. 4). Дублирующие извещатели (выделены синим цветом) образуют вторую треугольную решетку (рис. 4).
Рис. 4. Контроль площади двумя извещателями по треугольной решетке
Установка одного адресного пожарного извещателя
Установить только в помещении только 1 адресный пожарный извещатель можно, если соблюсти одновременно ряд требований:
- Указанная в техдокументации к извещателю площадь охраны равна или больше площади того помещения, где предполагается установка прибора.
- Корректность работы извещателя автоматически контролируется на приемном пульте, куда приходит сигнал об исправности или поломке датчика.
- Идентификация сломанного датчика проводится изменением свечения индикатора на пульте, а устранение поломки может провести дежурный в указанные правилами сроки.
- Поступивший сигнал о возникновении пожара не запускает автоматику пожаротушения.
Двойной контроль площади ИПДЛ
На первый взгляд, обеспечение двойного контроля линейным дымовым извещателем не должно вызывать каких-либо затруднений. Первый ИПДЛ устанавливаем так, чтобы его оптическая ось располагалась на расстоянии 0,5 м от стены, а ось второго ИПДЛ — на расстоянии 4,5 м от стены, у третьего ИПДЛ — на расстоянии 9 м от стены и так далее через 4,5 м. Однако такая расстановка допускается только при размещении ИПДЛ на расстоянии не более 0,6 м от перекрытия. При большем расстоянии вступает в силу требование п. 6.6.18 установки ИПДЛ с расстоянием между оптическими осями не более 25% от высоты установки и от стены — не более 12,5%. Для обеспечения двойного контроля площади расстояния между оптическими осями должны быть не более 12,5% от высоты установки. Если ИПДЛ располагаются на высоте 20 м, то максимальное расстояние между оптическими осями равно 2,5 м. Так как первый ИПДЛ должен быть установлен все так же на расстоянии 0,5 м стены, то расстояние между первым и вторым ИПДЛ равно 2,5 — 0,5 = 2 м. А если ИПДЛ располагаются на высоте 10 м, то максимальное расстояние между оптическими осями равно сокращается до 1,25 м, что определяет первую проблему, поскольку при близком расположении ИПДЛ наблюдается взаимное влияние в виде периодически возникающего сложения последовательностей импульсных сигналов. При повышении принятого сигнала относительно записанного при юстировке формируется сигнал «Неисправность», как при солнечной засветке оптической системы. Причем этот эффект усугубляется с увеличением расстояния между приемником и излучателем (отражателем). Например, если при расстоянии 50 м минимальное расстояние между оптическими осями ИПДЛ равно 1,5 м, то при 100 м составляет 3 м, а при 150 м — 4,5 м. Частично эта проблема может быть решена посредством расстановки приемников и излучателей в шахматном порядке (рис. 9). Для полного исключения влияния сигналов соседних ИПДЛ при их близком расположении, очевидно, требуется введение синхронизации импульсов излучателей.
Рис. 9. Расстановка ИПДЛ в шахматном порядке
Вторая проблема вытекает из запрета установки ИПДЛ на некапитальные конструкции и на сэндвич-панели, сформулированного в п. 6.6.18: «Не рекомендуется применять линейные дымовые ИП, если не обеспечена стабильность оптической связи пары излучатель — приемник. Установка линейных дымовых ИП на сэндвич-панели запрещается».
Что такое пожарные извещатели, чем регламентируются
Пожарные извещатели являются датчиками, обнаруживающими признаки пожара — изменения температуры и плотности воздуха, пламя, продукты горения — и сообщающие об этом пользователю тревожными звуковыми, световыми сигналами, по GSM каналам смской, на пульт АУПТ, АПС. Команды обнаружителей могут включать автоматические системы пожаротушения. Но также датчики не обязательно подсоединяются шлейфами к панели сигнализации, они могут подавать локальную тревогу (часто в жилых домах и небольших помещениях).
Нормы установки пожарных извещателей содержатся в таких актах:
- СП 5.13130 (основной);
- ГОСТы: Р 53325, Р 57552;
- НПБ 76, 85, 81.
Количество в зависимости от площади
Чтобы определиться, сколько адресных пожарных извещателей ставить в помещении исходя из его размеров, нужно пользоваться следующими рекомендациями.
Расстояние между двумя соседними устройствами в первом случае не должно быть больше 9 м, а во втором – не более 8,5 м. При использовании пожарных извещателей в помещениях с более высокими полками, например складские помещения, величина защищаемой площади одним устройством будет уменьшаться, как и требуемое расстояние между датчиками. Учитывая приведенные данные, могут вводиться корректировки в зависимости от технических параметров, описанных в инструкции к конкретному извещателю.
Пример расположения пожарных датчиков в помещении с большой площадью
Размещение в помещении
В процессе проектирования пожарной охранной системы важно не только, сколько пожарных извещателей должно быть в помещении, а и места их установки. Ведь от того насколько правильно расположен на объекте извещатель зависит корректность его срабатывания в той или иной ситуации
Точечные пожарные датчики, кроме устройств контроля наличия пламени, должны располагаться, как правило, под потолком. При невозможности расположить устройство на потолке допускается его монтаж на колонах, стенах и прочих элементах несущей конструкции, а также на тросах в подвесном состоянии.
При монтаже извещателя на потолке он не должен быть ближе 10 см к стенам, а при креплении к стенам и на тросах – на расстоянии в пределах 10…30 см от потолка. Если для крепления устройств применяются тросы должны выполняться условия их устойчивого положения и ориентации в пространстве охраняемого помещения.
Монтаж датчика на потолке
Монтаж дымовых и тепловых извещателей следует выполнять в соответствии с учетом того, как движутся воздушные потоки к отверстиям приточной и вытяжной сигнализации. Расстояние устройств от отверстий вентиляции должно быть не менее 1-го метра.
Если на объекте запланировано установить разнотипные извещатели, то следует придерживаться правил монтажа для каждого из них в отдельности.
Заключение
Чтобы пожарная охранная система функционировала нормально и обеспечивала требуемый уровень безопасности, ее проектирование и монтаж должны проводить специалисты. Они владеют определенной квалификацией, соответствующим оборудованием и имеют лицензию на проведение такого рода работ. Поручив установку пожарной сигнализации профессионалам, пользователю не придется ломать голову, сколько датчиков пожарных ставят в прихожей, а сколько в спальне или гостиной.
Методы обнаружения пожара
ИП тепловые и пламени основываются на таких принципах:
- первый самый старый, но безотказный метод — датчик активируется по достижении критического уровня t°, например под потолком. Пороговые значения прописываются в физических свойствах и механизме действия. Принцип действия: срабатывает термореле, легкоплавкий припой от температуры плавится, размыкая контакт (это максимальный тепловой извещатель);
- второй способ — фиксация резкого нарастания температуры за ед. времени. Это дифференциальные датчики.
Современные модели датчиков температурных и пламени обычно совмещают два указанных способа действия — это максимально-дифференциальные извещатели. Такие приборы наиболее чувствительные и эффективные.
У дымовых и газовых датчиков принцип действия иной: в них используют материалы и узлы, реагирующие на ионизацию (оптико-электронные), улавливающие частички дыма, копоти, аэрозолей, других продуктов горения (аспирационные извещатели).
“Цифровые” линейные извещатели
Требованиям ГОСТ Р 53325–2012 (EN 54-5) отвечает традиционный двухпроводной линейный тепловой извещатель с термопластичной изоляцией, так называемый цифровой линейный извещатель, по зарубежной терминологии. При его нагревании до температуры плавления изоляции происходит короткое замыкание проводников, повышается ток цепи и интерфейсный модуль формирует сигнал “пожар” (рис. 7).
Рис. 7. Принцип действия “цифрового” извещателя
Кроме того, по величине сопротивления проводников до точки замыкания можно определить расстояние до очага. Его длина может варьироваться от нескольких метров до нескольких километров при обеспечении совершенно одинаковой чувствительности (температуры срабатывания) в каждой его точке. Каждый тип “цифрового” извещателя имеет фиксированную температуру срабатывания, которая обычно указана в его названии и определяет класс этого теплового пожарного извещателя. Например, в названии ИПЛТ 57/135 указаны температура срабатывания 57 °С (135 °F), что определяет класс извещателя А1 (см. табл.).
Линейные тепловые извещатели (п. 6.6.5)
Для линейных тепловых извещателей зона контроля определена равной двум радиусам точечных извещателей. По СП 5.13130 в помещениях высотой до 3,5 м максимальное расстояние между точечными и между линейными тепловыми извещателями равно 5 м. По проекту СП в данном случае радиус защищаемой зоны равен 3,55 м, соответственно, максимальное расстояние между линейными тепловыми извещателями равно 3,55 м х 2 = 7,1 м (рис. 6), т.е. увеличивается в 1,42 раза. Естественно, это положение не распространяется на многоточечные линейные извещатели, защищаемая зона которых представляет совокупность зон точечных извещателей.
Рис. 6. Площадь контроля линейного теплового извещателя