Замер сопротивления изоляции

Содержание:

Принцип работы

Тестирование состояния изоляции, было разработано в начале 20-го века и является старейшим и наиболее широко используемым измерительным процессом в современной электротехнике и проводится согласно государственным стандартами электробезопасности. Это вызвано тем, что даже без видимых повреждений в изоляции кабельных сетей, ее сопротивление может стать недостаточным, чтобы защитить человека от воздействия токов высокого напряжения.

Принцип работы

Факторы, способствующие ухудшению изоляции:

  1. Температурный. Перепады температур с холодной на горячую, и наоборот с течением времени вызывают растрескивание изоляции.
  2. Электрический. Все кабели изготавливаются для определенных условий эксплуатации. Нарушений заводских условий использования может подвергнуть кабель к перенапряжению с потерей изоляции своих защитных свойств.
  3. Физический. Повреждение изоляции из-за нарушений эксплуатации или других неправомерных действий обслуживающего персонала.
  4. Химический. Моторное масло, грязь и пыль могут оказывать неблагоприятное химическое воздействие на изоляцию проводов.
  5. Окружающая среда. Этот фактор всегда воздействует на защитное покрытие кабелей: ультрафиолетовые лучи, влажность, снег и природные факторы, что должно учитываться разработчиками кабельной продукции.

Измерение сопротивления

Принцип работы меггера:

  1. Напряжение для тестирования ручным мегомметром получают путем вращения кривошипа, электронного типа — аккумулятором.
  2. 500В DC достаточно для выполнения тестирования систем работающих с напряжением до 440 В, а режим 1000 В до 5000 В — для испытаний высоковольтных электрических систем.
  3. Отклоняющая или токовая катушка соединена последовательно и позволяет пропускать электрический ток, принимаемый проверяемой цепью.
  4. Катушка управления, подключена к цепи.
  5. Токоограничивающий резистор (CCR и PCR) соединен последовательно с катушкой управления для защиты от повреждения в случае очень низкого сопротивления во внешней цепи.
  6. В мегомметре с ручным управлением эффект электромагнитной индукции используется для создания тестового напряжения. По мере увеличения его во внешней цепи, отклонение указателя увеличивается и уменьшается с увеличением тока.
  7. Работа тестера базируется на принципе омметра. Крутящий момент создается мегомметром из-за магнитного поля, создаваемого напряжением и током, аналогично закону Ома. Крутящий момент мегомметра меняется пропорционально V/I: V = IR или R = V / I, единица 1 Ом.
  8. Измеряемое электрическое сопротивление подключается через генератор и последовательно с отклоняющей катушкой. Когда проверяемая электроцепь разомкнута, крутящий момент из-за катушки напряжения будет максимальным, а стрелка показывать «бесконечность», что означает отсутствие короткого замыкания во всей цепи и имеет максимальное сопротивление в проверяемой цепи.

Важно! Если имеется КЗ, указатель показывает «ноль», что означает полное отсутствие сопротивление изоляционного покрытия

Поиск места повреждения изоляции

Последовательность действий при создании подобных ситуаций давно разработана и может выполняться разными способами.

Рекомендуемая методика проверки изоляции

Она основана на измерениях различных участков цепи мегаомметром и включает:

  • снятие с проверяемой схемы питания со всех сторон и отключения вводного автоматического выключателя;
  • проверку отсутствия напряжения на замеряемом участке;
  • подключение мегаомметра и замер им сопротивления изоляции;
  • снятие емкостного заряда с последующей разборкой схемы;
  • анализ полученных результатов.

Первоначально замеры проводятся на общем участке цепи, а затем из него последовательно исключаются подключенные цепочки с неисправным проводом и оборудованием. Восстановление изоляции до номинального значения указывает на отключенный дефектный элемент, который необходимо заменить.

Отыскание повреждения по наитию

Обнаружение опасного потенциала на корпусе недавно купленной кофемашины настолько обескуражило, что о стандартном поиске неисправностей с мегаомметром забыли. В результате пошли ошибочным путем.

Действие №1

Сразу подозрения пали на продавца, предоставившего этот товар. Срок его гарантии не закончился. Обратились в сервисный центр. Кофемашину приняли без вопросов, проверили и заявили: «Прибор исправен, дефекты не обнаружены».

Действие №2

Полученный урок от специалистов сервисного центра заставил задуматься о дальнейшем поиске места появления опасного потенциала. Возникли два подозрения:

  1. повреждение изоляции кабеля при монтаже, хотя обращались с ним крайне аккуратно;
  2. стекание потенциала через среднюю точку фильтров на РЕ-проводник и корпус электроприборов.

Логичным действием стало первоначально разобраться со вторым, наиболее простым пунктом. Ведь все наши сложные электрические помощники оборудуются фильтрами снижения в/ч помех для защиты бытовой сети и самих приборов.

Создаваемые через индуктивно-емкостные связи средние точки подключены к корпусу и РЕ-проводнику для стекания возникающих потенциалов на землю.

У нас же эксплуатируется схема заземления TN-C без защитного проводника с контуром заземления. А за счет подключения резервного провода кабеля в розетках происходит распределение стекающего потенциала с фильтра на корпуса всех подключенных к розеткам потребителей.

Чтобы не беспокоиться больше об этом вопросе пришлось снять концы резервных жил со всех заземляющих контактов розеток и после этого проверить работу схемы повторно.

Вольтметр опять показал опасный потенциал на корпусе!

Действие №3

В работе остался только кабель с потенциалами фазы и нуля, а также новая розетка Lezard. Вольтметром замерили напряжение на силовых контактах: обычные 220. Затем щуп с фазного контакта перенесли на защитный: 110 вольт. А ведь к нему вообще не подключено никакого провода, а опасный потенциал присутствует!

Таким образом место повреждения изоляции было найдено: дефект диэлектрического материала розетки Lezard. Через него часть потенциала фазы проникает на защитный контакт РЕ проводника.

Правила проведения измерений мегаомметром

Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

  1. Прибор должен проходить метрологическую поверку один раз в год.
  2. Пользоваться мегаомметром дозволяется обученному персоналу.
  3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов. Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся. Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

Протокол измерения сопротивления изоляции

Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически. То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень. Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон. Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды. Скорее всего, он вычтет ее из вашего гонорара.

После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

Напоследок

Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.

Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:

Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Проверка заземления в розетке

Признаками отсутствия заземления могут быть частые выходы бытовой техники из строя, легкие удары током от металлических частей электроприборов (при пробое на корпус), двухжильная проводка. Определить наличие заземления в розетке можно мультиметром в режиме измерения напряжения:

  1. Установить переключатель в сегмент АСV на 750 В.
  2. Щупы подключить к разъемам СОМ и VΩmA.
  3. Включить прибор.

При отсутствии в розетке третьего входа ее нужно разобрать, предварительно обесточив с помощью УЗО. Снять показания между фазой и нулем и между фазой и заземлением. Если напряжение на контактах везде равно 220±10%, то заземление работает исправно.

Точность лабораторных измерений

Факторы влияющие на старение проводки

Измерения сопротивления необходимо проводить при соответствующих условиях окружающей среды: температура, влажность, наличие пыли и даже освещенность существенным образом влияют как на результаты замеров, так и на работу приборов. Возможно, именно по этой причине считается идеальным проводить все измерения в лабораторных условиях. Тем более что в распоряжении электрика, производящего замер, может быть измерительный прибор MIC-2500. В настоящее время этот прибор считается наиболее точным для проведения описываемых измерений. Как правило, такие приборы проходят тщательную ежегодную проверку и калибровку, поэтому в их точность можно верить.

Основываются они на том, что каждый материал имеет определенную диэлектрическую проницаемость. Достаточно только знать толщину диэлектрика и материал, из которого изготовлена изоляция. Для замера толщины изоляции снимают небольшой ее кусок и с помощью штангенциркуля определяют толщину. А потом уже используется таблица. На пересечении соответствующих колонок можно найти сопротивление изоляции. Такой способ замеров только кажется надежным. В реальности отклонения в расчетах могут быть очень большими, потому что любой материал со временем теряет свои физические свойства. А это значит, что материал изоляции может уже иметь совершенно другие параметры. Пообщавшись с опытным электриком, вы в этом легко убедитесь.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как измеряется сопротивление

Порядок проверки состояния изоляционного слоя зависит от типа проверяемого электрического проводника. На начальной стадии выполняются идентичные действия:

  1. Проверяется работоспособность мегаомметра. Понадобится соединить два зажима устройства, и сделать замер. Прибор должен показать ноль. Затем концы проводов измерительного устройства разводятся в сторону, и выполняется замер. Если в результате получится бесконечность, то прибор исправен.
  2. Измерения ведутся со стороны кабельной линии, где установлено переносное заземление. В процессе работы необходимо использовать диэлектрические перчатки.
  3. На другом конце кабельной линии следует развести жилы проводника в стороны. Для обеспечения безопасности людей от поражения электрическим током во время проведения испытания, следует поставить человека для предупреждения об опасности.

На завершающем этапе необходимо сравнить полученные результаты с допустимыми значениями, и составить протокол. В нем отражается последовательность выполненных действий, используемые измерительные средства, температурный режим и заключение о состоянии электрического проводника.

Методика измерения сопротивления изоляции высоковольтных силовых кабелей

Прозвонить высоковольтные проводники необходимо с использованием мегаомметра на 2500 В. Последовательность действий следующая:

  1. Один конец измерительного устройства цепляется к контуру заземления, а второй к фазе «А» кабеля.
  2. Снимается заземляющий проводник с фазы «А», и делается замер на протяжении 60 секунд.
  3. Далее понадобится установить заземление на фазу «А», и снять зажим мегаомметра.
  4. В дальнейшем аналогичные операции проводятся для фаз «В» и «С».

Схема измерения изоляции высоковольтного кабеля

При значительной длине кабельной линии испытания производятся с учетом коэффициента абсорбции. Потребуется зафиксировать показания прибора после 15 и 60 секунд измерений. Отношение значения сопротивления после 60 секунд к показанию после 15 секунд должно быть не менее 1.3. При меньшем значении делается вывод об увлажнении изоляционного слоя. Для устранения неисправности потребуется выполнить сушку проводника.

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Для проведения работ потребуется использовать мегаомметр на 1000 В. После выполнения первоначальных пунктов, необходимо приступить к выполнению следующих мероприятий:

  1. Делается измерение сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
  2. Поочередно проверяется изоляция фаз кабеля относительно нулевого провода (N).
  3. Далее выполняется поочередные измерения между каждой фазой и заземляющим контуром (PE) при проверке пятижильного проводника.
  4. Отсоединяется нулевой провод от нулевой шинки и осуществляется измерение между N и PE.

Измерение сопротивления изоляции между жилами кабеля

После каждого испытания следует снимать потенциал посредством установки заземления.

Методика измерения сопротивления изоляции контрольных кабелей

Процесс проверки состояния изоляционного слоя указанной категории токопроводящих жил идентичен предыдущему пункту, за одним исключением. Жилы кабеля, которые не участвуют в проверке, необходимо закоротить и подсоединить к заземляющему контуру.

Прозвонка проводов

В режиме прозвонки можно проверить провода на обрыв на любом участке цепи. На шкале мультиметра она обозначена значком «звуковой микшер». При неповрежденной проводке и контактах будет слышен сигнал — тонкое попискивание. Если проводимости нет, звук прекращается.

Как узнать, целы ли провода:

  1. Выбрать переключателем режим прозвонки.
  2. Щупы вставить в базу СОМ и средний разъем VΩmA.
  3. Прикоснуться мультиметром к контактам исследуемого участка, замкнув цепь.

По наличию или отсутствию звука делаются выводы о целостности проводов. Рекомендуется предварительно прозвонить сами щупы, чтобы исключить их повреждение. Они соединяются наконечниками друг с другом, при этом должен слышаться непрерывный звук.

Что такое сопротивление провода изоляции

Сопротивление изоляции — это один из важнейших параметров любых кабелей и проводников. Основано это на том, что все провода в процессе их эксплуатации подвергаются сторонним воздействиям. Помимо внешнего влияния присутствуют также и внутренние: влияние жил одного провода друг на друга, взаимодействие по электромагнитным полям. Все это, так или иначе, приводит к появлению утечек.

Промышленный мегомметр для замера крупных значений сопротивления

Именно поэтому любые электрические и неэлектрические провода создаются с изоляцией, защищающей проводник от внешнего влияния. Среди популярных изоляционных материалов выделяют резину, поливинилхлорид, масло, дерево и бумагу. Используются эти материалы исходя из самого предназначения кабеля. Например, провода, прокладываемые под землей, изолированы сравнительно толстой лентой диэлектрика, а кабеля телекоммуникаций могут быть заключены в простую обертку из алюминиевой фольги.

Старый советский аналоговый стендовый омметр

Важно! Изоляция — это защита жил от воздействия потусторонних факторов, защита жилок друг от друга, от замыкания и от различных утечек. Сопротивление же изоляции это величина сопротивления между жилами провода или между одной из жил и изоляционным слоем

Любой материал со временем эксплуатации стареет и разрушается, что ведет к ухудшению его характеристик и снижению сопротивления изоляции постоянному или переменному току. Характеристика сопротивляемости изоляции указывается на кабеле и нормируется в его ГОСТе. Определяют его в лабораторных условиях при при температуре в 20 градусов.

Произведение измерений сопротивляемости профессиональным мегаомметром

Низкочастотные кабели связи имеют минимальное сопротивление изоляции в 5 Гигаом на километр, а коаксиальные в свою очередь — 10 Гигаом на километр. Измерение и проверку сопротивляемости проводят на регулярной основе мегаомметром: на установках мобильной связи — один раз в 6 месяцев, на объектах повышенной опасности — один раз в 12 месяцев, на других объектах — один раз в три года.

Вам это будет интересно Проверка тиристора ку202н

Резистор для повышения сопротивляемости электрической сети

Значение сопротивления изоляции для электрических кабелей и проводки

Для тестирования изоляции необходимо отсоединить кабели от панели или оборудования, а также от источника электропитания. Проводку и кабели следует тестировать друг относительно друга (фаза с фазой) с кабелем заземления (Е). Ассоциация IPCEA (Insulated Power Cable Engineers Association) предлагает формулу определения минимальных значений сопротивления изоляции.

R = K x Log 10 (D/d)

R = Значение сопротивления изоляции в МОм на 305 метров кабеля К = Постоянная изоляционного материала. (Электроизоляционная лакоткань = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000) D = Внешний диаметр изоляции проводника для одножильного провода или кабеля (D = d + 2c + 2b диаметр одножильного кабеля) d = Диаметр проводника c = Толщина изоляции проводника b = Толщина изолирующей оболочки

Высоковольтное тестирование нового кабеля XLPE (в соответствии со стандартом ETSA)

Применение Испытательное напряжение Минимальное значение сопротивления изоляции
Новые кабели – Оболочка 1 кВ постоянного тока 100 МОм
Новые кабели – Изоляция 10 кВ постоянного тока 1000 МОм
После восстановления – Оболочка 1 кВ постоянного тока 10 МОм
После восстановления – Изоляция 5 кВ постоянного тока 1000 МОм

Кабели 11 кВ и 33 кВ между сердечником и землей (в соответствии со стандартом ETSA

Применение Испытательное напряжение Минимальное значение сопротивления изоляции
Новые кабели 11 кВ – Оболочка 5 кВ постоянного тока 1000 МОм
11 кВ после восстановления – Оболочка 5 кВ постоянного тока 100 МОм
33 кВ без подключенного TF 5 кВ постоянного тока 1000 МОм
33 кВ с подключенным TF 5 кВ постоянного тока 15 МОм

Кабели 11 кВ и 33 кВ между сердечниками и землей

Измерение значения сопротивления изоляции (между проводниками (перекрестная изоляция))

  • первый проводник, для которого проводится измерение перекрестной изоляции, необходимо подключить к выводу Line мегомметра. Другие проводники соединяются вместе (с помощью зажимов типа «крокодил») и подсоединяются к выводу Earth мегомметра. На другом конце проводники не соединяются;
  • после этого поверните ручку или нажмите кнопку мегомметра. На дисплее измерительного прибора будет показано сопротивление изоляции между проводником 1 и остальными проводниками. Показания сопротивления изоляции следует записать;
  • потом подсоедините к выводу Line мегомметра другой проводник, а другие проводники соедините с выводом заземления мегомметра. Проведите измерение.

Измерение значения сопротивления изоляции (изоляция между проводником и землей)

  • подсоедините тестируемый проводник к выводу Line мегомметра;
  • соедините вывод Earth мегомметра с землей.;
  • поверните ручку или нажмите кнопку мегаомметра. На дисплее измерительного прибора будет показано сопротивление изоляции проводников. После поддержания испытательного напряжения в течение минуты до получения стабильных показаний следует записать значение сопротивления изоляции.

Измеряемые значения:

  • если во время периодического тестирования получено сопротивление изоляции подземного кабеля при соответствующей температуре от 5 МОм до 1 МОм на километр, данный кабель должен быть включен в программу замены;
  • если измеренное сопротивление изоляции подземного кабеля при соответствующей температуре от 1000 кОм до 100 кОм на километр, данный кабель следует заменить срочно, в течение года;
  • если измеренное сопротивление изоляции кабеля меньше 100 кОм на километр, данный кабель следует заменить немедленно как аварийный.

Особенности приборов разных видов

Высокое испытательное напряжение в приборах традиционной конструкции получали с помощью магнитоэлектрического генератора (динамо-машины) постоянного тока. Внутри мегаомметра закреплена небольшая динамо-машинка, а сбоку корпуса есть рукоять. Так как для нормальной работы динамо-машины требуется, чтобы якорь вращался с высокой скоростью, рукоять связана с якорем через шестерёнчатый повышающий редуктор.

Учитывая, что измерения проводятся на протяжении нескольких минут, это нелёгкая работа. Кроме того, корпус прибора не всегда удаётся хорошо закрепить, и стрелка прибора колеблется, затрудняя считывание показаний. Всё это приводит к тому, что пользоваться прибором с ручным приводом непросто. Но у мегаомметров этого типа есть неоспоримое преимущество: они не требуют ни батареек, ни аккумуляторов. Измерения можно производить буквально «в чистом поле».

Позднее появились мегаомметры с возможностью подключения внешнего источника испытательного напряжения. Такие приборы удобно использовать в комплекте передвижных испытательных лабораторий — «летучек». При испытаниях к линии подключают мегаомметр и отдельный источник высокого напряжения. Стабильность внешнего источника позволяет производить продолжительные и точные измерения.

Гораздо удобнее проверять состояние электрооборудования с помощью современных приборов, питающихся от аккумулятора.

Цифровые индикаторы облегчают считывание результата измерения. Микропроцессорный блок не только запоминает результаты, но и позволяет сразу вычислить дополнительные параметры качества изоляции и сопоставить их с таблицами допустимых величин. Даже величина испытательного напряжения задаётся простым поворотом ручки или вводом с клавиатуры.

Особенности составления документа

Если перед вами встала задача по формированию акта замера сопротивления изоляции, а вы никогда прежде не делали такого документа, мы дадим вам некоторые рекомендации. Посмотрите и готовый пример – на его основе вы без особых усилий оформите собственный бланк.

Перед тем как перейти к подробностям, обрисуем некоторые свойственные для всех подобного рода бумаг, детали.

  1. Во-первых, любой акт на сегодняшний день можно писать в свободном виде. Однако, если внутри организации есть его форма – лучше сделать документ по ее типу, поскольку она скорее всего разработана с учетом всех потребностей и содержит нужные столбцы, строки и таблицы.
  2. Во-вторых, акт можно составлять вручную или набирать на компьютере. Во втором случае, заполненный бланк нужно распечатать. Это надо для того, чтобы участвующие в контрольных мероприятиях лица могли поставить в документе свои подписи – без этих автографов он не будет считаться действительным. Если предприятие применяет штемпельные изделия для визирования своей документации, в акте следует поставить оттиск печати.
  3. В-третьих, акт нужно делать как минимум в двух одинаковых экземплярах – по одному для каждой из сторон, участвующих в измерениях. Кроме того, по мере надобности можно сделать и дополнительные копии, также заверив их надлежащим образом.

После того, как акт будет сформирован и подписан, он подлежит обязательному хранению. Период хранения определяется либо действующим законодательством, либо внутренними нормативными документами предприятия (но не меньше трех лет).

В случае возникновения каких-либо непредвиденных нештатных ситуаций, этот документ может помочь установить виновных лиц и взыскать с них нанесенный ущерб. Пригодится акт и тогда, когда придут представители электроснабжающей организации – они также могут проводить свои проверки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector