Перегрузка трансформатора
Содержание:
- Последствия при перегрузке трансформаторов тока (реальный пример)
- Выбор мощности силового трансформатора
- Основные характеристики
- Систематическая перегрузка — трансформатор
- Допустимая перегрузка трансформаторов в нормальных и аварийных режимах.
- Перегрузка — трансформатор
- Перегрузка трансформатора, ее виды
- Автоматическая релейная защита
Последствия при перегрузке трансформаторов тока (реальный пример)
Ноябрь 1st, 2015 Рубрика: Трансформаторы тока, Электрооборудование Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
В сегодняшней статье я хотел бы поделиться с Вами информацией по перегрузке трансформаторов тока и последствиями, возникающими при этом явлении.
В качестве примера я сошлюсь на реальный случай, который произошел буквально на днях на одной из распределительных подстанций.
В общем, дело было так. Низковольтная распределительная подстанция, щит 220 (В).
На одном из фидеров ведется коммерческий учет электроэнергии с помощью счетчика ПСЧ-4ТМ.05МК.16, который подключен через два трансформатора тока ТОП-0,66 с коэффициентом трансформации 50/5. Сейчас про схему подключения я говорить не буду — на эту тему читайте отдельную статью: схемы подключения счетчиков электрической энергии через трансформаторы тока.
Для контроля тока нагрузки в фазе А подключен щитовой амперметр типа Э30, откалиброванный на коэффициент трансформации 50/5.
Вот принципиальная однолинейная схема этого присоединения.
Вот графики нагрузок за последние 2 месяца: сентябрь и октябрь. Эти данные я выгрузил из 30-минутных профилей мощности данного электросчетчика.
Средняя нагрузка за сентябрь составила 8,04 (А), максимальная нагрузка — 43,2 (А).
Средняя нагрузка за октябрь составила 11,7 (А), максимальная нагрузка — 103,05 (А).
Ничего не предвещало беды, пока потребитель однажды резко не увеличил потребляемую мощность. Как видите, с середины октября нагрузка стала частенько превышать 50 (А). Дело в том, что в это время потребитель приобрел и установил какой-то мощный станок. Соответственно, нагрузка на фидере резко возросла и порой превышала более 100% от номинального первичного тока наших ТТ.
Но всем известно, что у трансформаторов тока имеется некоторая перегрузочная способность и он способен кратковременно выдерживать некоторое увеличение нагрузки.
Существует единственный и действующий ГОСТ 7746-2001, по которым изготавливают трансформаторы тока и в котором упоминается про их допустимую перегрузку. В п.6.6.2 этого ГОСТа говорится следующее:
А вот эта самая таблица 10 (для наглядности я ее разбил на несколько частей).
Чуть ниже по тексту в этом ГОСТе имеется примечание о том, что допускается кратковременно увеличивать первичный ток трансформаторов тока на 20% по отношению к его наибольшему рабочему первичному току, но по согласованию с производителем и не более 2 часов в неделю.
В нашем же случае потребитель ничего не согласовывал, а просто увеличил первичный ток ТТ даже не на 20%, а более, чем на 100%, что и привело к следующим последствиям.
Повышенный ток вызвал значительный нагрев обмоток ТТ. По фотографиям оплавленных корпусов уже снятых трансформаторов тока видно, что в основном грелась вторичная обмотка. Это объясняется тем, что при превышении тока нагрузки магнитопровод мог уйти в насыщение, а следовательно, грелась не только вторичная обмотка, но и само «железо».
Если бы оперативный персонал при периодическом осмотре вовремя не заметил зашкалившую стрелку амперметра и не почувствовал запах гари и оплавленной изоляции, то последствия могли быть еще более серьезней, например, вплоть до короткого замыкания. Вот ссылочка, где на примерах из своей практики я рассказывал про последствия от коротких замыканий. Тогда бы точно пришлось менять не только трансформаторы тока.
По этому инциденту пока еще ведется расследование, но в любом случае за нарушение эксплуатации электроустановки потребитель понесет наказание, согласно действующего законодательства (скорее всего штраф). Естественно, что ему же придется оплатить приобретение новых трансформаторов тока и услуги по их замене.
С учетом изменившейся нагрузки потребитель запросил увеличить выделяемую мощность, поэтому было решено установить трансформаторы тока ТТИ-А с коэффициентом трансформации 150/5, что мы успешно и сделали. Также нам пришлось заменить щитовой амперметр, откалиброванный на коэффициент 150/5 с пределом 150 (А).
Замену трансформаторов тока, как на высоковольтных, так и на низковольтных подстанциях, по тем или иным причинам мы производим с регулярной периодичностью.
Вот буквально около месяца назад на этой же подстанции мы производили замену стареньких трансформаторов тока КЛ-0,66 на ТТИ-А. У меня даже фотографии сохранились — до замены и после. Причина замены: не прошли очередную поверку.
Зачастую старые ТТ, в основном такие как, ТК-10 или ТК-20 выходят из строя по причине ухудшения изоляции первичной обмотки, но об этом я напишу как-нибудь в следующий раз.
Выбор мощности силового трансформатора
Выбор мощности силового трансформатора
Рациональная схема электроснабжения зависит от технически обоснованного подбора мощности трансформатора, влияющего на эксплуатационные затраты и окупаемость, которая возможна за 6 – 10 лет.
При выборе трансформатора руководствуются следующими критериями:
- Категория электроснабжения – определяется количество трансформаторов. Объекты категории электроснабжения III – один трансформатор. Объекты II и I категории электроснабжения – два или в некоторых случаях три трансформатора.
- Перегрузочная способность – определение мощности трансформатора.
- Суточный график распределения нагрузок – учет нагрузок по времени и дням в неделю.
- Экономичный режим работы тр-ра.
Выбор числа трансформаторов
Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.
При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.
Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.
Как выбрать силовой трансформатор по мощности
Сбор и анализ мощностей потребителей, запитанных от одного трансформатора, не всегда оказывается достаточным.
Для производственных объектов руководствуются порядком ввода оборудования в работу. При этом учитывают, что все потребители не могут быть включены одновременно
Однако также принимают во внимание возможное увеличение производственной мощности
Поэтому при расчете и выборе мощности силового трансформатора руководствуются графиком среднесуточной и полной активной нагрузки подстанции, а также длительностью максимальной нагрузки. Если рассчитывается трансформатор, который будет участвовать в электроснабжении объектов жилой инфраструктуры, то учитывают и время года. В зимнее время нагрузка увеличивается за счет включения электрического обогрева, летом – кондиционеров.
Таблица №1 — Выбор силового трансформатора по мощности и допустимым аварийным нагрузкам
Вид нагрузки | Интервалы нагрузки (кВ-А) для трансформаторов мощностью (кВ-А) | |||||||
25 | 40 | 63 | 100 | 160 | 250 | 400 | 630 | |
Производственные потребители, хоздворы, мастерские по обслуживанию сельскохозяйственной техники, стройцеха, овощехранилища и насосные станции водоснабжения, котельные | до 42 | 43-68 | 69-107 | 108-169 | 170-270 | 271-422 | 423-676 | 677-1064 |
Комунально-бытовые потребители — общественные и административные предприятия (школы, клубы, столовые, бани, магазины) в сочетании с жилыми домами | до 44 | 45-70 | 71-110 | 111-176 | 177-278 | 279-435 | 436-696 | 697-1096 |
Сельские жилые дома, группы сельских жилых домов (как правило, одноэтажной застройки) | до 45 | 46-72 | 73-113 | 114-179 | 180-286 | 287-447 | 448-716 | 717-1127 |
Комунально-бытовые потребители поселков городского типа и городов районного подчинения | до 43 | 44-68 | 69-108 | 109-172 | 173-270 | 271-422 | 423-676 | 677-1064 |
Жилые дома, поселки городского типа и города районного подчинения | до 42 | 43-68 | 69-107 | 108-170 | 171-273 | 274-427 | 428-684 | 685-1077 |
Смешанная нагрузка с преобладанием (более 60%) производственных потребителей | до 42 | 43-67 | 68-106 | 107-161 | 162-257 | 258-402 | 403-644 | 645-1014 |
Со смешанной нагрузкой с преобладанием (более 40%) комунально-бытовых потребителей | до 42 | 43-68 | 69-107 | 108-164 | 165-262 | 263-410 | 411-656 | 657-1033 |
Основные характеристики
Мощность – определяет количество мощности потребителей, которых возможно подключить к данному устройству в нормальном режиме работы;
Напряжение – определяет характеристики электрической сети, для которых предназначено устройство.
Режимы работы трансформатора
- Рабочий режим – когда устройство работает в соответствии с заданными техническими параметрами и в соответствии с предъявляемыми требованиями.
- Режим холостого хода – в данном режиме работы в первичной обмотке протекает ток холостого хода, вторичная сеть – разомкнута (нагрузка отсутствует);
- Режим короткого замыкания – аварийный режим работы, характеризуется замыканием вторичной обмотки накоротко.
Еще один режим, который может возникнуть в процессе эксплуатации – это режим перегрузки, характеризующийся еще не режимом короткого замыкания, но, тем не менее, параметрами, не соответствующими рабочему режиму работы.
Систематическая перегрузка — трансформатор
График зависимости превышения нагрузки &2 от коэффициента начальной нагрузки k и длительности перегрузки t. |
Систематическая перегрузка трансформатора может быть допущена только при условии, если у него в течение последних суток была недогрузка.
Построение двухступенчатого графика по суточному графику нагрузки трансформатора.| График нагрузочной способности трансформаторов с системой охлаждения Д мощностью от 6 3 до 32 MB — А, эквивалентной температурой охлаждающей среды 20 С. |
Систематическая перегрузка трансформаторов возможна за счет неравномерной нагрузки в течение суток.
Силовой трансформатор. |
Систематическая перегрузка трансформатора в течение суток может быть допущена только при условии, если у него была недогрузка.
Систематические перегрузки трансформаторов допускаются в зависимости от характера суточного графика нагрузки, температуры охлаждающей среды и недогрузки в летнее время.
Систематические перегрузки трансформатора не должны превышать 50 % номинальной мощности. Систематические перегрузки, более чем 1 5-кратным номинальным током, могут быть допущены только по согласованию с заводом-изготовителем.
Возможна систематическая перегрузка трансформатора в зимнее время, если летом он работал с недогрузкой. Оба правила можно применять совместно, но при этом общая величина перегрузки не должна превышать 150 % от номинальной мощности трансформатора.
Значение систематических перегрузок трансформаторов допускается в зависимости от характера суточного графика нагрузки, температуры охлаждающей среды и недогрузки в летнее время.
Под систематической перегрузкой трансформатора понимают такой режим ( совокупность условий), при котором в течение части времени нагрузка трансформатора превышает его номинальную мощность, а в остальное время рассматриваемого периода ( суток, года) она меньше номинальной; при этом износ изоляции за рассматриваемый период не превышает номинального износа, соответствующего температуре обмотки 98 С.
Под систематической перегрузкой трансформатора понимают такой режим ( совокупность условий), при котором в течение части времени Нагрузка трансформатора превышает его номинальную мощность, а в остальное время рассматриваемого периода ( суток, года) она меньше номинальной; при этом нагрузки таковы, что износ изоляции за рассматриваемый период не превышает номинального износа, соответствующего температуре обмотки 98 С. При систематической перегрузке трансформатора температура обмотки в наиболее нагретой точке ( в часы максимума нагрузки) превышает 98 С, о она не должна быть выше 140 С. Температура масла в верхних слоях не должна превышать 95 С. Однако основным критерием допустимости того или иного режима при систематической перегрузке трансформатора является износ изоляции за рассматриваемый период. Температура обмотки может лимитировать систематическую перегрузку только при наличии резко выраженных пиков нагрузки. Трансформатор может работать в режиме систематической перегрузки в течение всего срока службы.
Вопрос о систематических перегрузках трансформаторов связи при проектировании ТЭЦ, как правило, не рассматривается. Он возникает только в условиях эксплуатации, когда нагрузка становится отличной от расчетной.
Таким образом, принимая наиболее неблагоприятные условия работы трансформаторов, приходим к выводу, что систематическая перегрузка трансформатора на 11 % является допустимой.
А изменяется в два раза; Т — длительность интервала повторяемости нагрузки, во время которого происходят систематические перегрузки трансформатора.
Допустимая перегрузка трансформаторов в нормальных и аварийных режимах.
Допускается продолжительная работа трансформаторов (при мощности не более номинальной) при напряжении на любом ответвлении обмотки на 10% выше номинального для данного ответвления. При этом напряжение на любой обмотке должно быть не выше наибольшего рабочего.Для масляных трансформаторов допускается длительная перегрузка по току любой обмотки на 5% номинального тока ответвления, если напряжение на ответвлении не превышает номинального.
Кроме того, для трансформаторов в зависимости от режима работы допускаются систематические перегрузки, значение и длительность которых регламентируются типовой инструкцией по эксплуатации трансформаторов и инструкциями заводов-изготовителей.В аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах:
Масляные трансформаторы: перегрузка по току, % |
длительность перегрузки, мин. |
Сухие трансформаторы перегрузка по току, % |
длительность перегрузки, мин. |
Допустимые продолжительные перегрузки сухих трансформаторов устанавливаются заводской инструкцией.
Включение в сеть трансформатора (реактора) должно осуществляться толчком на полное напряжение. Трансформаторы, работающие в блоке с генератором, могут включаться вместе с генератором подъёмом напряжения с нуля.
Параллельная работа трансформаторов разрешается при следующих условиях:
— группы соединений обмоток одинаковы;
соотношение мощностей трансформаторов не более 1:3;
— коэффициенты трансформации отличаются не более чем на ±0,5%;
— напряжения короткого замыкания отличаются не более чем на ±10%;
— произведена фазировка трансформаторов.
Для выравнивания нагрузки между параллельно работающими трансформаторами с различными напряжениями короткого замыкания допускается в небольших пределах изменение коэффициента трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен.
Назначение и работа переключателей под нагрузкой.
Устройства регулирования напряжения под нагрузкой (РПН) трансформаторов должны быть в работе в автоматическом режиме. По решению технического руководителя допускается устанавливать неавтоматический режим. В этом случае регулирование напряжения ведётся при необходимости путем дистанционного переключения РПН с пульта управления (если в нормальном режиме колебания напряжения в сети находятся в пределах, удовлетворяющих требования потребителей электроэнергии).Не допускается переключение устройства РПН трансформатора, находящегося под напряжением, вручную (рукояткой). Переключающие устройства РПН трансформаторов разрешается включать в работу при температуре верхних слоёв масла минус 20°С и выше (для погруженных резисторных устройств РПН) и минус 45°С и выше (для устройств РПН с токоограничивающими реакторами, а также для переключающих устройств с контактором, расположенным на опорном изоляторе вне бака трансформатора и оборудованным устройством искусственного подогрева). Эксплуатация устройств РПН должна быть организована в соответствии с положениями инструкций заводов-изготовителей.
Перегрузка — трансформатор
Перегрузка трансформаторов ( автотрансформаторов) обычно бывает симметричной. Поэтому защита от перегрузки выполняется с помощью максимальной токовой защиты, включенной на ток одной фазы.
Схема автоматики аварийной разгрузки трансформатора. |
Перегрузка трансформаторов может возникнуть также и после действия АВР, когда к трансформатору, несущему нагрузку, подключается дополнительная нагрузка секции, потерявшей питание. Длительная перегрузка трансформатора вызывает перегрев его обмоток, что может привести к разрушению изоляции и повреждению трансформатора.
Перегрузка трансформатора на 72 % недопустима. Поэтому при установке на подстанции двух трансформаторов мощностью по 10 MB-А требуется отключение части нагрузки при выходе из работы одного из трансформаторов.
Принципиальная схема максимальной токовой защиты обратной последовательности с приставкой для защиты от трехфазных к. з. |
Перегрузка трансформаторов ( автотрансформаторов) обычно бывает симметричной. Поэтому защита от перегрузки выполняется с помощью максимальной токовой защиты, включенной на ток одной фазы.
Перегрузка трансформатора допускается в течение времени, за которое превышение температуры возрастет от значения TO до предельно допустимого значения в номинальном режиме Туст.
Перегрузка трансформатора не обязательно связана с перегрузкой переключающего устройства. Перелрузки во время переключений в силу их кратковременности и эпизодичности, конечно, е могут существенно повлиять на износ контактов. Требуется только, чтобы время горения дуги не было недопустимо большим по условиям надежности работы переключающего устройства.
Перегрузка трансформатора не обязательно связана с перегрузкой переключающего устройства
Практически следует принимать во внимание лишь те трансформаторы, на которых устройство РЛН данного типа работает в условиях, близких к предельным по отключающей способности контактора.
Схема параллельной работы двух трехфазных трансформаторов. |
Перегрузка трансформатора током ведет к повышенному нагреву изоляции обмоток, что, в свою очередь, вызывает быстрое старение изоляции и ее разрушение. Поэтому трансформатор при работе не должен нагреваться выше установленных пределов.
Перегрузка трансформаторов не влияет на работу системы в целом, так как она обычно не сопровождается снижением напряжения. С другой стороны, сверхтоки перегрузки относительно невелики, и их протекание допустимо в течение некоторого времени, достаточного для того, чтобы персонал принял меры к разгрузке. Так, согласно нормам, перегрузку порядка 1 6 / ном можно допустить в течение 45 мин. Поэтому защита трансформатора от перегрузки при наличии дежурного персонала должна выполняться с действием на сигнал. На подстанциях без дежурного персонала защита от перегрузки должна действовать на разгрузку или отключение, трансформатора, если он выдерживает длительные перегрузки. Если же он не может длительно перегружаться, то защита от перегрузки не устанавливается. К ненормальным режимам трансформаторов с масляным заполнением относится также недопустимое понижение уровня масла, которое может произойти, например, вследствие повреждения бака.
Перегрузка трансформаторов не влияет на работу системы в целом, так как она обычно не сопровождается снижением напряжения. С другой стороны, сверхтоки перегрузки относительно невелики и их протекание допустимо в течение некоторого времени, достаточного для того, чтобы персонал принял1 меры к разгрузке. В связи с этим защита трансформатора от перегрузки при наличии дежурного персонала должна выполняться с действием на сигнал. На подстанциях без дежурного персонала защита от перегрузки должна действовать на разгрузку или отключение при возможности длительной перегрузки трансформатора.
Перегрузка трансформаторов ведет к усиленному износу изоляции и сокращению срока службы трансформатора. Однако в реальных условиях эксплуатации у большинства трансформаторов нагрузка изменяется как в течение суток, так и в течение года.
Диаграмма нагрузочной способности масляных трансформаторов. |
Перегрузка трансформатора, ее виды
Совокупность допустимых нагрузок и перегрузок – определяет нагрузочную способность трансформатора.
Допустимая нагрузка – нагрузка, соответствующая номинальному режиму работы, неограниченная по времени, при которой не происходит износ изоляции обмоток, вызываемый нагревом в процессе работы.
Перегрузка – режим работы, вызванный подключением мощности нагрузки больше номинальной или температуры окружающей среды больше расчетной. При перегрузке происходит ускоренный износ изоляции обмоток.
Перегрузки бывают:
- Систематические – вызванные суточным графиком работы. Такие режимы работы должны соответствовать допустимым коэффициентам перегрузки и времени их прохождения для каждого конкретного устройства.
- Аварийные – вызванные аварийными ситуациями. Перегрузки данного вида бывают:
- Кратковременные;
- Длительные.
Перегрузка масляных трансформаторов
Масляный трансформатор – силовой агрегат, в котором в качестве охлаждающей жидкости используется масло.
Режим работы аппаратов подобного типа регламентирован ГОСТ 14209-97 (МЭК354-91) «Руководство по нагрузке силовых масляных трансформаторов», который введен в действие в 2001 году.
Предельные значения температуры и тока для режима перегрузок:
Тип нагрузки | Трансформаторы | ||
Распределительные | средней мощности | Большой мощности | |
Систематические | |||
Значения электрического тока (относительных единиц) | 1,5 | 1,5 | 1,3 |
Температура наиболее нагретого участка, °С | 140 | 140 | 120 |
Температура охлаждающего реагента (масла) в верхнем слое, °С | 105 | 105 | 105 |
Аварийные, продолжительные | |||
Значения электрического тока (относительных единиц) | 1,8 | 1,5 | 1,3 |
Температура наиболее нагретого участка, °С | 150 | 140 | 130 |
Температура охлаждающего реагента (масла) в верхнем слое, °С | 115 | 115 | 115 |
Аварийные, кратковременные | |||
Значения электрического тока (относительных единиц) | 2,0 | 1,8 | 1,5 |
Температура наиболее нагретого участка, °С | См.примечания | 160 | 160 |
Температура охлаждающего реагента (масла) в верхнем слое, °С | См.примечания | 115 | 115 |
*Примечания:
- Для аварийных перегрузок, которые имеют кратковременный характер, предельные значения температуры охлаждающего реагента (масла) в верхнем слое и наиболее нагретого участка – не установлены. Причиной этого, является то, что при эксплуатации подобного типа оборудования, нет возможности осуществлять контроль продолжительности аварийной перегрузки данного типа трансформаторов.
- При эксплуатации распределительных трансформаторов необходимо не забывать, что при температуре превышающей 140-160 °С, возможно выделение пузырьков газа, снижающих электрическую прочность изоляции.
Перегрузка трансформаторов тока
Устройство и режим работы устройств регламентированы ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия», принят Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 20 от 1 ноября 2001 г.) и введен в действие 01.01.2003 года.
Перегрузка данного типа аппаратов возникает при подключении нагрузки больше номинальной, в связи с этим, величина тока в первичной сети, увеличивается, что негативно отражается на изоляции устройства.
Автоматическая релейная защита
Реле защиты в трансформаторе представляет небольшую емкость, в которой будет находиться масло. Эту деталь могут использовать в трансформаторах дуговой плавки. Устройство необходимо для защиты трансформатора от перенапряжения. Реле состоит из поплавка и специального резервуара. Поплавок необходимо закрепить на шарнире, чтобы он мог свободно двигаться в зависимости от уровня масла. На поплавок также устанавливают специальный ртутный выключатель. Его положение будет зависеть от уровня масла.
Нижний элемент может состоять из специального реле. Эта пластина будет закреплена специальными шарнирами. Основные элементы реле также могут иметь специальные камеры, клеммы и сигнальные кабеля.
Принцип действия релейной защиты трансформатора считается достаточно простым. Он считается специальным механическим приводом, который способен самостоятельно отключить трансформатор, если в нем возникнут определенные неисправности. Конечно, этот процесс не решит проблему, но сможет значительно продлить срок службы вашего устройства. Если вы не знаете устройство автотрансформатора, тогда можете про него прочесть.