Что такое ntc термисторы

Понятие NTC температурных датчиков

При обычном применении резисторов не нужно, чтобы их сопротивление (R) менялось с изменением температуры. Зависимость минимальная, иначе элемент влиял бы на схему, например, диод не контролировано менял бы интенсивность свечения. Но если требуется, чтобы его яркость была функцией температуры, то применяют термистор — резистор, сопр. которого чувствительное даже к небольшим сдвигам t°. Такое свойство отображается основной характеристикой — кривой графика зависимости R/T.

Negative Temperature Coefficient — «отрицательный (минусовый) коэффициент t°», он же NTC. Это наиболее часто встречающийся тип температурных сенсоров, так как они дешевле всех прочих, с хорошей эффективностью, достаточной для большинства приборов.

Преимущества, сравнение с иными термодатчиками

Достоинства:

  • значительная крутизна кривой R/T, малые отклонения от номиналов, что свидетельствует о хорошей сенситивности;
  • минимальное время отклика;
  • значительные величины ТКС, то есть большая чувствительность, увеличенная степень изменения R в зависимости от t° (порядка 2–10 % на Кельвин);
  • сопротивление демонстрирует большое, точное, прогнозируемое уменьшение по мере роста рабочих температур на ядре резистора;
  • чрезвычайная компактность, терморезисторы подойдут на любые платы, даже на пространства, измеряющиеся в мм (есть типоразмеры в виде бусинок), поэтому датчики с ними компактные;
  • лучшая прочность, надежность, стабильность, приспособленность для экстремальных сред, помехоустойчивость в своих рабочих диапазонах;
  • экономичность, менее трудозатратные в обслуживании. Если кривая правильная, то калибровки не потребуется при монтаже и на всем сроке эксплуатации;
  • по кривой легко узнать нужное сопротивление при конкретной температуре.

Преимущества и недостатки:

По сравнению с RTD По сравнению с термопарами
Недостатки Достоинства Достоинства Недостатки
менее точные (но не намного)диапазон по t° меньше, чем у RTD отклик быстрее точность аналогичная при наличии иных плюсов Меньший диапазон, термопары работают с t° выше (+600° C)
большая сенситивность, стабильность, корректность в своих рабочих рамках;
простая эксплуатация, что снижает цену, не требуются усилители, интерпретаторы и прочее
меньший, удобный размер
низкая стоимость (один их главных плюсов)
стойкость к ударам, вибрациям выше

Коэффициенты параметров, токоограничивающие свойства лучше в несколько раз, чем у термодатчиков из Si. На порядок выше (от 10 раз), чем у RTD (металлические термодетекторы).

Если сравнивать с RTD (платиновыми), то линия R/T более крутая, что отображает лучшую сенситивность. Но все-таки первые наиболее точные (±0.5 % от замеряемой t°) и они лучшие для границ −200…+800° C, что шире, чем у NTC, но преимущество последних в дешевизне и простоте.

Как перевести десятичное число в шестнадцатеричное?

Чтобы перевести десятичное число в шестнадцатеричное, необходимо выполнить следующие действия:

  1. Проверяем, не меньше ли 16 наше число: если да, то результат достигнут. Действительно, такое десятичное число необходимо лишь заменить соответствующей ему шестнадцатеричной цифрой из таблицы 1. Если же наше десятичное число больше 16, переходим к шагу 2.
  2. Делим наше число НАЦЕЛО на 16 и запоминаем целочисленный остаток от этого деления. Результат этого деления снова сравниваем с 16. Если результат деления меньше 16, то его стоит тоже запомнить как последний из остатков.
  3. Шаг 2 повторяем до тех пор, пока результат деления не будет меньше 16. Целочисленные остатки на всех этапах запоминаем. Они понадобятся в шаге 4.
  4. Все остатки записываем в обратном порядке и заменяем в них числа от 10 до 15 шестнадцатеричными цифрами от a до f.

Проиллюстрируем эти правила примером.

Переведем десятичное число 89 в шестнадцатеричное. Оно больше 16, поэтому разделим его на 16. Частное равно 5 и 9 в остатке. 5 меньше 16, значит, деление прекращается и 5 запомним как последний остаток. То есть у нас есть два остатка: 9 и 5. Теперь их надо записать в обратном порядке, получаем: 89 = 0×59.

Проверим, действительно ли 0×59 равно 89? Распишем его по привычной уже схеме: 0×59 = 5×161 + 9×16 = 5×16 + 9 = 89.

Действительно, получилось. Но в выбранном мной примере число 89 очень быстро закончилось, если так можно сказать. В противном случае деление потребовалось бы продолжить. Покажем это на более сложном примере. Возьмем число 3728: 3728 / 16 = 233 и  в остатке. Затем 233 / 16 = 14 и 9 в остатке. Результат этого деления равен 14, он меньше 16. Деление заканчиваем и запоминаем этот результат деления как последний остаток. Нам осталось лишь записать эти остатки в обратном порядке и заменить десятичное число 14 на шестнадцатеричную цифру E. Итак, искомое число 0xE90.

В качестве домашнего задания можете перевести это число в десятичное и проверить, действительно ли 0xE90 равно 3728?

На этом месте статья заканчивалась, я решил ее несколько дополнить. Продолжаем.

Основные характеристики терморезисторов

Важно обращать внимание на характеристики термисторов NTC. Они могут меняться по ряду причин: производитель, тип и применяемый материал. В первую очередь покупатель должен изучить размер

Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа

В первую очередь покупатель должен изучить размер. Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа.

Следующие важные пункты:

  • сопротивление RT;
  • постоянная времени;
  • коэффициент рассеивания.

Это основные моменты, которые нужно учитывать при покупке детали.

Характеристики нагрева

Есть 2 типа терморезисторов, если полагаться на способ нагревания, положенный в основу их принципа действия:

  • косвенный;
  • прямой.

При косвенном нагреве будет изменяться температура термистора под воздействием элементов, размещенных рядом с ним.

При прямом она также меняется, но только под влиянием окружающего воздуха или тока, который проходит через элемент. В этом и заключается основное отличие.

Преимущества NTC

Термисторы пользуются гораздо большим спросом, нежели позисторы. Есть у них ряд преимуществ. Это элементы, которые можно стабильно использовать долгий срок, не волнуясь за их выход из строя, даже несмотря на экстремальные условия среды. Еще один плюс — компактные габариты.

Упаковка настолько удобна, что применение радиоэлементов возможно на небольшой территории или в ограниченном пространстве, для них не нужно много места на плате. Еще одно достоинство — быстрое время отклика. Они реагируют на изменения температурного режима, если есть необходимость в обратной связи. Показатели экономичности не менее важны.

Мастер может рассчитывать на недорогую цену, а еще простую установку. Но даже столь выгодный элемент не лишен недостатка. Он заключается в том, что в условиях современного производства отсутствует возможность производить его в массовом тираже, соблюдая идентичность характеристик. Параметры сильно отличаются. Это касается случаев, когда элементы выпускаются одной партией. По этой причине нужно повторно проводить настройку оборудования.

Где именно применяются датчики температуры NTC

Конкретизируем, где именно применяются NTC датчики.

Наиболее характерные сферы:

  • все возможные температурные датчики;
  • холодильные, отопительные, нагревательные системы, где не допускается понижение температуры;
  • системы вентиляции, кондиционирования;
  • контроль за степенью охлаждения в трубах, на открытых локациях;
  • теплые полы, бойлеры (водонагреватели), котлы;
  • обнаружение отсутствия или наличия жидкости;
  • ограничители тока;
  • мониторинг t° в автомобилях и прочих агрегатах.

Если обобщить, то это такие направления по температуре:

  • измерение;
  • контроль, управление, связанные с t°;
  • компенсационные процессы.

Примеры применения на практике:

  • различные терморегуляторы, термостаты для окружающей среды в холодильниках, бойлерах, для кабельных стяжек, поверхностей нагревательных конструкций;
  • термометры различных сред (жидкости, газы), включая воздух в комнатах;
  • нагреватели устройств 3D печати (для контроля рабочих площадок, чтобы материал не прилипал к ним);
  • автодвигатели, моторы различного типа, включая электрические (предотвращение перегрева);
  • печи (предотвращение пригорания, сжигания готовящейся еды).

При установке пленочных теплых полов выносные сенсоры NTC закладывают в гофротрубу, например, стандартно Ø 16 мм, прямо под одной из нагревательных ИК полос на сегменте наименьшей теплоотдачи (под ковриками, мебелью на коротких ножках).

Детекторы NTC можно разделить на 3 группы в зависимости от того, какая их электрохарактеристика важная для определенных целей.

Для каких целей значимы определенные характеристики

Характеристика Где используется
Сопротивление-температура Для приложений, приборов, для работы которых значимо соотношение температура/сопротивление. Это устройства для замеров t°, контроля, управления и компенсации, некоторых других связанных физических процессов. На термисторе поддерживают как можно более низкий ток, чтобы максимально уменьшить самонагрев такого зонда.
Текущая временная Приборы с временной задержкой, ограничением пусковых токов, предупреждение перегрузок, перенапряжений и прочего. Характеристика, связанная с теплоемкостью, диссипацией датчика ntc. Схема полагается на терморезистор, нагревается из-за тока на ней, в определенный момент появляются изменения.
 По напряжению Для устройств, базирующихся на характеристиках напряжения, тока термических резисторов. Это приборы мониторинга условий окружающей среды, параметров на схеме, которые инициируют изменения рабочей отметки на заданной кривой цепи. Также для ограничения токов, температурной компенсации, измерений t°.

Температурные детекторы NTC и PTC

Есть два типа термисторов: отличается направление зависимости R от температуры, механизм ТКС. Слово перед сокращением фразы «Temperature Coefficient» отображает данный нюанс:

  • Negative. NTC, рассматриваемые нами. С отрицательным t° коэфф. С ростом температуры падает сопр.;
  • Positive, PTC. Второе название позисторы. С положительным t° коэфф. R увеличивается.

Для NTC терморезисторов используют смеси многокристаллических оксидов переходных металлов (MnO, СoOx, NiO и CuO), полупроводников определенных типов (A, B), и стеклоподобных (Ge и Si). А PTC (позисторы) состоят из твердых веществ, основанных на BaTiO₃, данный сплав имеет именно позитивную реакцию (ТКС). Но отличия в работе в основном лишь в направлении зависимости R/T.

Наиболее популярные температурные детекторы NTC среднего диапазона: ТКС −2.4…-8.4 %/К, с широкими границами сопр. (1…106 Ом). Если говорить о PTC, то эти цифры 0.5…0.7 %/К, часто они из кремния, их сопротивление, в отличие от NTC, приближается к линейному.

PTC используются на оборудовании охлаждения, температурной стабилизации в радиоэлектронных схемах, как саморегулирующиеся нагревательные детали. Их R увеличивается по мере роста их же нагрева (PTC нагреватели), такая запчасть никогда не перегреется, всегда выдает устойчивые тепломощности при значительном диапазоне напряжений.

Сферы чрезвычайно схожие, а принцип в основе аналогичный — все зависит от того, что требуется, негативный или положительный ТКС:

  • NTC следит за понижением температуры;
  • PTC — за повышением.

Datasheet Download — ETC

Номер произв NTC10D-9
Описание (NTCxD-9) NSP Power Type NTC Thermistors
Производители ETC
логотип  

1Page

No Preview Available !

NSP POWER TYPE NTC THERMISTORS
* Introduction:
••Vatronics is Suitable for the use in switching power supply, UPS power supply, electric heaters, electronic
energy-saving lighting, electronic ballast and electronic devices for power supply circuit protection; and for the
use in color video tube, incandescent bulb and other lighting devices for filament protection; it features small
size, high power, strong resistance to surge current, quick response, high B value, low residue resistance, long

wwswe.rDvaictaeSlhifeee,th4Uig.hcormeliability, high security and wide applications.

* Applications:
••Suitable for the use in switching power supply, UPS power supply, electric heaters, electronic energy-saving
lighting, electronic ballast and electronic devices for power supply circuit protection; and for the use in color video
tube, incandescent bulb and other lighting devices for filament protection.
* Features:

••x Small size, high power and strong resistance to surge current;

••y Quick response;

••z High in B value and low in residual resistance;

••{ Long service life and high reliability;

••| High security and wide applications.

Vatronics Part Number System
NTC 5D 13
(1) (2) (3)
(1)Product Type: NTC
(3)Diameter =13mm
(2)Risistor Value at 25C =5C

No Preview Available !

Code
(Chip
Diameter)
A
Chip
Diameter
MAX
B
Lead
Wire
Length
MIN
C Pitch
D
Chip
Thickness
MAX

Ex

Lead Wire
Diameter
F
Distance
from Lead
Wire to
Chip MAX

Gy

Molding
Distance

Hy

Post-
Molding
Pitch MIN
20
22
25 7.5±1/10±1
7
1.0
4
28±3.5
4.5
15
16.5
25 7.5±1/10±1
6
1.0
4
24±3.5
4.5
13
14.5 25 7.5±1
6
0.8
4
22±3.0
4.5
11 12.5 25 5±1
www.DataSheet4U.com
9 10.5 25 5±1
5
5
0.8
4
20±2.0
3.0
0.6
4
18±2.0
3.0
Note:

x «E» value may be 0.6 for resistors for which the chip’s diameter is ≤φ13and the working current is ≤2A.

y «G» column and «H» column stand for bend dimensions of the lead.

Specifications List
Model Number

R25±20%

(Ω)

Max.
Current (A)
Approx. Resistance in
Max. Current at 25• (

Ω)

Dissipation
Power
(mW/•)
Time
Constant
•S•
Operating
Temperature
•••
NTC3D-9
3
4
0.12 11 35
NTC4D-9
4
3
0.19 11 35
NTC5D-9
5
3
0.21 11 34
NTC6D-9
6
2
0.315
11 34
NTC8D-9
8
2
0.4 11 32
NTC10D-9
10
2
0.458
11 32
NTC12D-9
12
1
0.652
11 32
NTC16D-9
16
1
0.802
11 31
NTC20D-9
20
1
0.864
11 30
NTC30D-9
30
1
1.022
11 30
NTC50D-9
50
1
1.252
11 30
NTC80D-9
80
0.8
2.01
11 30
NTC2R5D-11
2.5
5
0.095
13 43

No Preview Available !

NTC3D-11
3
NTC4D-11
4
NTC5D-11
5
NTC6D-11
6
NTC8D-11
8
NTC10D-11
10
NTC12D-11
12
NTC16D-11
16
NTC20D-11
www.DataSheet4U.com
NTC30D-11
20
30
NTC50D-11
50
NTC80D-11
80
NTC1R3D-13
1.3
NTC1R5D-13
1.5
NTC2R5D-13
2.5
NTC3D-13
3
NTC4D-13
4
NTC5D-13
5
NTC6D-13
6
NTC7D-13
7
NTC8D-13
8
NTC10D-13
10
NTC12D-13
12
NTC15D-13
15
NTC16D-13
16
NTC20D-13
20
NTC30D-13
30
NTC1R3D-15
1.3
NTC1R5D-15
1.5
5
4
4
3
3
3
2
2
2
1.5
1.5
1.2
7
7
6
6
5
5
4
4
4
4
3
3
3
3
2.5
8
8
0.1
0.15
0.156
0.24
0.255
0.275
0.426
0.47
0.512
0.667
1.021
1.656
0.062
0.073
0.088
0.092
0.12
0.125
0.17
0.188
0.194
0.206
0.316
0.335
0.338
0.372
0.517
0.048
0.052
13
13
13
13
13.5
14
14
14
15
15
15
15
13
13
13
14
15
15
15
15
15
15
16
16
16
16
16
18
19
43
44
45
45
47
47
48
50
52
52
51
51
60
60
60
60
67
68
65
-55~+200
65
60
65
65
60
60
65
65
68
69

Всего страниц 5 Pages
Скачать PDF

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Что такое термистор NTC

Под термистором NTC стоит понимать компоненты, показатель сопротивления которых варьируется под воздействием температурного режима. Сфера применения данного радиоэлемента зависит от его свойств. В основном термисторы нужны, чтобы проводить измерения и контролировать показатели температуры. Также применяются для обнаружения жидкости или фиксации ее отсутствия. Встречаются термисторы NTC и в устройствах по ограничению тока. Спектр их использования широк, начиная от радиолюбителей и заканчивая солидными масштабными производствами.

Из задач, возлагаемых на термисторы NTC, важной считается контроль температуры. Поэтому без этих элементов сложно обойтись разработчикам и сложного промышленного оборудования, и простых приборов бытового назначения

На современном рынке представлен большой выбор термисторов NTC от производителей, представляющих разные страны мира. Впервые этот элемент был изобретен в далеком 1930 году. Его представил ученый Самюэль Рубен.

Группы терморезисторов, их характеристики

Все терморезисторы NTC делятся на группы в зависимости от показателей температуры, которую они способны выдерживать. Этот параметр объясняет, в каком режиме способно работать устройство, а где оно попросту не сможет справляться со своими функциональными обязанностями.

Терморезисторы бывают:

  • низкотемпературные (до 170К);
  • среднетемпературные (170–510К);
  • высокотемпературные (900–1300К).

Терморезисторы разделяют также на термисторы и позисторы. У первых отрицательный температурный коэффициент (ТКС), у вторых — положительный. Известна еще одна разновидность — комбинированный компонент. Например, терморезистор NTC, который имеет косвенный нагрев. В корпусе устройства есть датчик, оснащенный нагревательным элементом. Он задает температуру терморезистору и начальное сопротивление тока. Эти радиоэлементы на практике встречаются в виде переменных резисторов, контролирующих напряжение, приложенное к датчику нагрева.

Классификация в зависимости от принципа действия

Исходя из принципа действия, терморезисторы делят на:

  • контактные;
  • бесконтактные.

К первой категории принято относить элементы биметаллического типа, разные термодатчики, а также термопары. Если речь идет о бесконтактном принципе действия, значит это датчики с инфракрасной опцией. Они способны определять ИК-излучение и оптические лучи, которые выделяются жидкостью и газами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector