Отопление частного дома солнечными батареями
Содержание:
- Преимущества солнечных батарей
- Мнения экспертов о продукции
- Разновидности
- 2. Из чего сделаны солнечные батареи второго поколения
- 9. Особенности солнечных батарей с квантовыми точками
- Виды солнечных панелей
- Принцип работы
- Разновидности солнечных панелей
- Выгода от солнечных батарей и их окупаемость
- Как выполнятся монтаж
- Плюсы и минусы альтернативной отопительной системы
- Что можно получить от солнечных батарей?
- Устройство
- Плюсы и минусы солнечных батарей
- Установка солнечных батарей
- Выводы и полезное видео по теме
- Выводы
Преимущества солнечных батарей
Солнечная энергия — это перспективное направление, которое постоянно развивается. Они имеют несколько основных достоинств. Удобство использования, долгий срок службы, безопасность и доступность.
Положительные стороны применение данной разновидности аккумуляторных батарей:
- Возобновляемость – этот источник энергии практически не имеет ограничений притом бесплатный. По крайней мере на ближайшие 6.5 миллиардов лет. Нужно подобрать оборудование, установить его и использовать по назначению (в частном доме или коттеджном участке).
- Обильность – Поверхность земли в среднем получает около 120 тысяч терравват энергии что в 20 раз превышает нынешнее энергопотребление. Солнечные батареи для коттеджей или частных домов имеют огромный потенциал для использования.
- Постоянство – солнечная энергия постоянна поэтому человечеству не грозит перерасход в процессе ее использования.
- Доступность – солнечная энергия может вырабатывать на любой территории, при наличии естественного света. При этом чаще всего она применяется для отопления жилища.
- Экологическая чистота – солнечная энергетика является перспективной отраслью, которая в будущем заменит электростанции, работающие на невозобновляемых ресурсах: газ, торф, уголь и нефть. Безопасны для здоровья людей и домашних животных.
- При производстве панелей и монтаже солнечных электростанций в атмосферу не происходят значительные выбросы вредных или токсичных веществ.
- Бесшумность – выработка электроэнергии производится практически бесшумно, и поэтому этот вид электростанций лучше ветровых электростанций. Их работа сопровождается постоянным гулом из-за чего оборудование быстро выходит из строя, а сотрудники должны делать частые перерывы на отдых.
- Экономичность – при использовании солнечных батарей владельцы недвижимости ощущают значительное снижение коммунальных расходов на электроэнергию. Панели имеют долгий срок службы – производитель дает гарантию на панели от 20 до 25 лет. При этом обслуживание всей электростанции сводится к периодической (раз в 5-6 месяцев) очистке поверхностей панелей от грязи и пыли
Мнения экспертов о продукции
Выбор типа солнечной станции зависит от задачи, которую необходимо решить с помощью альтернативных источников энергии.
В настоящее время наиболее широко применяются три типа солнечных электростанций:
- Автономные. В местах, где нет подключения к центральной сети, в садах, на дачах, автономные солнечные электростанции самые востребованные, хорошо подходят для освещения и других жизненно важных электроприборов. Применение автономных солнечных станций позволяет существенно экономить финансы, на жидкое топливо для генераторов, особенно в районах с большим количеством солнечных дней.
- Комбинированные с сетью. Если есть центральная сеть, то не нужно отказываться от нее, лучше сделать систему совместную с сетью. Автоматическая работа инвертора, входящего в состав такой станции, будет самостоятельно выбирать источник питания электрических приборов. А входящие в состав аккумуляторные батареи будут источником резервного электроснабжения, при отключениях сети.
- Сетевые on-grid. Сетевые солнечные электростанции самые выгодные и быстро окупаемые, поскольку не имеют в составе аккумуляторных батарей и преобразование энергии происходит с высоким КПД. Более того, позволяют передавать (продавать) излишки генерируемой электроэнергии в сеть, тем самым ускоряя процесс окупаемости. Во многих странах при такой генерации с помощью возобновляемых источников для продажи электроэнергии действует «зеленый тариф». В РФ в 2019 году принят в первом чтении Федеральный закон №581324-7 «О внесении изменений в ФЗ «Об электроэнергетике» в части развития микрогенерации», который позволит реализовывать электрическую энергию, вырабатываемую альтернативными источниками, по специальному тарифу. Покупка гарантирующим поставщиком электроэнергии от объектов микрогенерации будет обязательной. Цена купли-продажи будет равна средневзвешенной нерегулируемой цене на электроэнергию на ОРЭМ. Доходы физических лиц, возникшие при реализации лишней электроэнергии, произведенной для нужд своего домохозяйства, не будут подлежать налогообложению.
Независимо от выбранного типа солнечной электростанции, стоит понимать, что для надежной и эффективной работы лучше приобретать высококачественные солнечные батареи. Несмотря на более высокую стоимость они более эффективны и долговечны. Срок службы батарей может достигать 30 и более лет. Покупатели часто задают вопрос: «Почему выработка зимой меньше?» Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять, плюс меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.
Разновидности
Солнечные батареи подразделяются на следующие виды.
Кремниевые
Кремний — самый популярный материал для батарей.
Кремниевые батареи также делятся на:
- Монокристаллические: для производства таких батарей используется очень чистый кремний.
- Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.
Пленочные
Такие батареи подразделяются на следующие виды:
- На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
- На основе селенида меди — индия: КПД выше, чем у предыдущих.
- Полимерные.
Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.
Аморфные
КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.
2. Из чего сделаны солнечные батареи второго поколения
Следующее поколение батарей использует тот же физический принцип p/n перехода, однако создано на базе комбинаций редкоземельных элементов (реже – аморфного кремния). Вспомогательные конструкционные элементы панелей в большинстве случаев те же – металлическая основа, антиотражающая пленка и защитное стекло. Однако все чаще появляются и безрамные конструкции, а также тонкопленочные варианты, способные сворачиваться в рулоны и изгибаться под любыми углами.
Наиболее частыми полупроводниками для ячеек таких батарей служат:
- аморфный кремний a-Si;
- теллурид кадмия (CdTe);
- селенид индия/галлия/меди (CIGS).
Иногда на предложение привести примеры, из чего делают солнечные батареи тонкопленочного типа, профильные специалисты приводят и другие, более экзотические варианты. Однако их совокупная доля не превышает 0,1% и используется преимущественно в лабораторных исследованиях.
Название «тонкопленочные» происходит от значительно меньшей толщины рабочих слоев – от 1 до 3 мкм, что почти в 100 раз меньше, чем у кремниевой «классики». КПД при идеальных условиях тонких пленок составляет 16-20%. Однако при рассеянном свете и/или больших углах падения излучения панели CdTe / CIGS могут быть более эффективны.
9. Особенности солнечных батарей с квантовыми точками
Последний перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ.
Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.
Физико-технические характеристики, сертификация и маркировка
Независимо от того, из чего сделаны солнечные батареи, каждая из них обладает рядом следующих важных характеристик:
- механические – геометрические параметры, общая масса, тип рамы, защитного стекла, количество ячеек, вид и ширина коннекторов;
- электрические или вольтамперные – мощность, напряжение холостого хода, сила тока при максимальной нагрузке, эффективность панели в целом и отдельных ячеек в частности;
- температурные – изменение КПД при повышении температуры на определенную единицу величины (обычно – 1 градус);
- качественные – срок службы, скорость деградации ячеек, присутствие в рейтинговых списках Bloomberg;
- функциональные – необходимость и удобство ухода, простота монтажа/демонтажа.
Промышленные солнечные панели, из каких бы материалов они не были сделаны, обязательно должны быть сертифицированы. Минимальными требованиями являются сертификаты качества ISO, СE, TUV (международные) и/или Таможенного союза (при продаже в его пределах).
Обязательной является и международные правила маркировки. Например, аббревиатура CHN-350M-72 содержит следующие сведения:
- CHN – идентификатор компании-изготовителя (в данном случае – китайской СhinaLand);
- 350 – мощность панели в ваттах;
- M – обозначение монокристаллического кремния;
- 72 – число фотоэлектрических ячеек в модуле.
Из чего можно сделать солнечные батареи своими руками дома
Для этого необходимо следующее:
Предварительно начерченная схема и проведенные расчеты.
Определенное количество солнечных ячеек заводского изготовления – купить их дешевле всего в сети, например, на сайте Aliexpress или в других сетевых магазинах
Обращайте внимание на то, чтобы все элементы имели одинаковые электрические характеристики. Самодельный каркас из бруса и фанеры – правила его сборки можно посмотреть на многочисленных видео в сети
Оргстекло или плексиглас для поверхностного защитного покрытия.
Краска и термостойкий клей для обработки деревянных поверхностей.
Контактные полосы и провода для соединения ячеек. Схемы различные способов соединения также можно изучить в интернете.
Паяльник и припой. Паяльные работы следует проводить очень внимательно, чтобы не испортить будущее изделие.
Силиконовый клей и саморезы для закрепления сборной батареи в каркасе.
Небольшая батарея потребует около 30-50 долларов вложений, в то время как заводской вариант аналогичной мощности обойдется всего на 10-20% дороже.
Разумеется, подобная самодельная конструкция не прослужит 25 лет, не будет обладать мощностью полноценной солнечной электростанции и не сможет похвастаться значительным КПД. Однако стоимость ее будет минимальной настолько, насколько это возможно.
Виды солнечных панелей
Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).
Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:
Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.
Монокристаллическая солнечная панель
Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.
Поликристаллические солнечные панели
Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.
Тонкопленочные (аморфные) солнечные панели
Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.
Гетероструктурные солнечные панели Основные элементы конструкции:
- аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
- инвертор – преобразователь тока (из постоянного в переменный);
- контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).
В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.
Принцип работы
Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.
Схема работы фотоэлемента
Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.
Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.
Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов
Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).
На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.
Мобильный телефон Samsung E1107 оснащен солнечной батареей
Разновидности солнечных панелей
Фотоэлектрический преобразователь создают по разным технологиям. Кроме эффективности источника автономного питания (КПД) учитывают:
- цену;
- скорость деградации;
- рекомендованные условия эксплуатации.
Некоторые фотоэлементы обеспечивают генерацию при неблагоприятных погодных условиях.
Кремниевые
Главное условие высокой эффективности преобразования энергии солнечного света — отсутствие примесей в кремнии. Технология производства рабочих элементов определяет параметры генерации.
Кремниевые панели.
Поликристаллические
Для изготовления фотоэлементов применяют высокотемпературную обработку исходного сырья. Расплавленный материал после остывания отличается неравномерным распределением цвета поверхности. Сравнительно низкий КПД фотоэлектрических преобразователей (до 16%) компенсирует способность генерации энергии при разных углах падения лучей. Мощность уменьшается, если облака создают тень. Однако сохраняется рабочее состояние фотоэлемента.
Монокристаллические
Пластины создают из цилиндрических заготовок, поэтому углы срезают. Упорядоченная направленность кристаллов увеличивает КПД источника автономного питания до 30%. Ускоренное старение уменьшает эффективность генерации до 25-30% за 25 лет эксплуатации оборудования.
Из аморфного кремния
Рабочий слой фотоэлемента наносят напылением. Применяют подложку из гибкого материала. Такие панели можно устанавливать на криволинейную основу. КПД — не более 11%.
Из редких металлов
Дороговизна исходного сырья увеличивает стоимость изделий. Самые эффективные пластины создают из арсенида галлия (индия), обеспечивают КПД ≤ 40%. Отдельные комбинации редких металлов сохраняют хорошие показатели фотоэлектрических преобразователей, если температура оборудования увеличивается до +150°C.
Выгода от солнечных батарей и их окупаемость
К сожалению, в России пока нет льготного порядка подключения солнечных батарей к сетям общего электроснабжения. Исключение составляют соединенные сетью солнечные электростанции мощностью от 5 до 25 МВт, которые поддерживаются в рамках Постановления Правительства РФ от 28 мая 2013 г. №449 “О механизме стимулирования использования возобновляемых источников энергии (ВИЭ) на оптовом рынке электрической энергии и мощности”. В рамках этого постановления владельцы соединенных с сетью солнечных электростанций получают платежи за установленную мощность, т.е. за каждый установленный кВт солнечных панелей. Размер платежа определяется по формулам, порядок расчета приведен в Приложениях к Постановлению и здесь рассматриваться не будет, т.к. данное постановление не имеет отношения к солнечным батареям, установленных у частных лиц и предприятий для снижения собственных затрат на элеткроэнергию. Полный текст Постановления №449 от 28/03/2013 можно скачать с сайта правительства или отсюда.
Все остальные должны подключаться к электросетям по общей процедуре технологического подключения, которая является довольно сложной и дорогостоящей.
Ситуация скоро может радикально измениться. Владельцам частных солнечных батарей мощностью до 15 кВт можно надеяться на порядок бесплатного подключения к местным электросетям и даже на получение платежей за отданную в сеть электроэнергию. Такую надежду дает недавнее Поручение вице-президента Правительству РФ о стимулировании развития микрогенерации на основе возобновляемых источников энергии от 17 февраля 2017 года. Вполне возможно, что скоро любой владелец солнечной батареи, соединенной с сетью через соответствующий сетевой фотоэлектрический инвертор, сможет получать небольшую компенсацию за отправленные в сеть излишки солнечной электроэнергии. Предполагается, что для расчетов для платежа будет использоваться текущая рыночная цена на оптовом рынке электроэнергии. Конечно, это делает невыгодным отдачу излишков в сеть, но зато появится возможность легального подключения к электросетям. Поручение делает исключение для многоквартирных домов – для них порядка установки и подключения солнечных батарей к электросетям пока не предвидится.
Как выполнятся монтаж
Выбирают место, где будут фиксироваться панели. Оценивают факторы:
- тень: следует найти наиболее ярко освещаемый на протяжении всего дня участок;
- ориентация по сторонам света: если объект расположен на севере, модуль располагают лицевой панелью к югу и, наоборот;
- угол наклона: он должен соответствовать широте, в которой находится объект (в зависимости от положения относительно экватора осуществляется коррекция 12°).
Монтаж солнечных панелей
Крепить панели можно на крыше дома или при помощи специальных ферм. В первом случае достаточно зафиксировать профили. К ним уже крепят модули при помощи болтового соединения. Когда же солнечные батареи монтируются на специальных конструкциях (фермах), этапы работ будут отличаться:
- Выполняется сборка профилей, уголков.
- Подготавливают болты нужного размера, инструмент.
- Фиксируют панели так, чтобы не было люфта между ними и опорной конструкцией.
Подключение электроники предполагает необходимость присоединения батареи посредством проводов. Соединяют контроллер, инвертор согласно схеме. На последнем этапе вся конструкция подключается к потребителю (обслуживаемому объекту).
Плюсы и минусы альтернативной отопительной системы
Достоинств у солнечной системы обогрева не так много, но каждое из них весомо и может стать причиной для частных экспериментов:
- Экологические достоинства. Это безопасный для жильцов дома и окружающей природы, чистый источник тепла, не требующий применения традиционных видов топлива.
- Автономность. Владельцы систем абсолютно не зависят от цен на энергоносители и от экономической обстановки в стране.
- Экономичность. При сохранении традиционной отопительной системы появляется возможность снизить затраты на оплату горячего водоснабжения.
- Общедоступность. Для установки солнечных систем не нужно разрешения из государственных инстанций.
Но существует и неприятные моменты, способные испортить общую картину. Например, для определения эффективности работы системы потребуется продолжительный период – не менее 3 лет (при условии, что солнечной энергии достаточно и она используется активно).
Установка только солнечных модулей потребует больших вложений: самые дешевые кремниевые панели обойдутся не менее 2200 руб. за штуку, а поликристаллические шестидиодные элементы первой категории – до 17000 за штуку. Подсчитать стоимость 30 модулей довольно просто (+)
Пользователи отмечают следующие недостатки:
- высокие цены на оборудование, необходимое для запуска системы в эксплуатацию;
- прямая зависимость количества произведенного тепла от географического положения и погоды;
- обязательное наличие резервного источника, например, газового котла (на практике зачастую резервной оказывается гелиосистема).
Чтобы добиться большей отдачи, приходится регулярно следить за исправностью коллекторов, очищать их от мусора и беречь от образования наледи в заморозки. Если температура часто опускается ниже отметки 0ºС, нужно позаботиться о дополнительной теплоизоляции не только элементов гелиосистемы, но и дома в целом.
Что можно получить от солнечных батарей?
Обеспечить свой дом теплом и горячей водой бесплатно, только за счет солнечной энергии — сценарий возможный, однако нужно понимать, что это не круглогодичное решение.
Дело в том, что на нашей широте наблюдается неравномерное распределение солнечного света в течение года. В России мы можем наслаждаться прекрасным солнцем только в течение нескольких летних месяцев. В свою очередь, с осени до начала весны лучам приходится пробиваться сквозь густые облака. Следовательно, использование солнечной энергии в этот период ограничено.
По этой причине солнечные батареи могут полностью удовлетворить задачу обогрева дома только в летние месяцы. В оставшиеся месяцы они лишь незначительно будут поддерживать тепло в доме.
В любом случае, установив такую систему на крыше, в течение 5-7 месяцев в году мы сможем бесплатно пользоваться горячей водой, что, безусловно, станет значительным облегчением для семейного бюджета, не говоря уже об охране окружающей среды.
Устройство
Конструкция солнечной батареи очень проста.
Основу конструкции устройства составляют:
- корпус панели;
- блоки преобразования;
- аккумуляторы;
- дополнительные устройства.
Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.
Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.
От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.
Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.
Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.
Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.
Плюсы и минусы солнечных батарей
Солнечная батарея обладает своими преимуществами и недостатками. Рассмотрим их более подробно.
Плюсы:
- Высокая экологичность. При эксплуатации не используются невосполнимые ископаемые, не возникает отходов.
- Отсутствие шума.
- Доступность. Каждый уголок Земного шара освещается Солнцем.
- Постоянство. Если ископаемые могут закончиться, их выработка уменьшиться, то наcчет солнечной энергии беспокоиться не стоит. По данным ученых, нашему светилу еще долго ничего не грозит.
- Обширная область использования. Панели могут применяться как в сельской местности, так и в космосе.
- Новые технологии. На солнечных батареях проводят испытания, на их усовершенствование тратятся громадные суммы, данная область постоянно модернизируется, подвергается инновациям.
Минусы:
- Дороговизна. Не каждый человек может позволить себе установить достаточное количество солнечных элементов питания для обеспечения своих нужд. Электрификация небольшого дачного домика обойдется в 1000-1200 долларов, в то время как на двухэтажных особняк может уйти до 10 000 у.е.
- Солнечное освещение – непостоянная единица. КПД батареи будет снижаться в ночное время, пасмурную погоду.
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Выводы и полезное видео по теме
Ролик #1. Показ установки солнечных батарей на крышу дома своими руками:
Ролик #2. Выбор аккумуляторных батарей для гелиосистемы, виды, отличия:
Ролик #3. Дачная солнечная электростанция для тех, кто все делает сам:
Рассмотренные пошаговые практические приемы расчетов, основной принцип эффективной работы современной солнечной панельной батареи в составе домашней автономной гелиостанции помогут хозяевам и большого дома густонаселенного района, и дачного домика в глуши обрести энергетическую суверенность.
Хотите поделиться личным опытом, который получили в ходе сооружения мини гелиосистемы или только батареи? Возникли вопросы, на которые хотелось бы получить ответ, нашли недочеты в тексте? Оставляйте, пожалуйста, комментарии в расположенном ниже блоке.
Выводы
Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.
Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».