Шлейф сигнализации

Для чего производятся замеры

Данное контрольное действие является обязательной частью комплекса мер по обслуживанию электрической сети.

Основная цель замера сопротивления изоляции — слежение за работой электролиний и своевременное предотвращение любых неисправностей и поломок.

Поврежденная электропроводка может привести к нанесению вреда здоровью людей (в том числе поражению электрическим током и серьезным ожогам), нештатным аварийным ситуациям. Если речь идет о производственных компаниях, то вследствие перебоев с электричеством, возникших из-за изъянов, разрывов, порчи электрокабелей и пр. электрооборудования, могут возникнуть сбои в производственных процессах и как следствие, крупные финансовые потери.

Исходя из этого, все предприятия заинтересованы в том, чтобы обслуживание электрокоммуникаций проводилось качественно и своевременно. По результатам каждой проверки состояния электросетей формируются особые отчетные документы, в том числе и акты замера сопротивления изоляции.

Параметры шлейфа сигнализации

Чтобы шлейф сигнализации исправно функционировал и Заказчик не страдал бы от ложных срабатываний и был уверен в надежности системы, при проектировании необходимо учитывать следующие факторы:

  • максимальное количество извещателей — актуально при использовании извещателей пожарной сигнализации и охранных извещателей с питанием по шлейфу. Учитывая, что ток в шлейфе небольшой нужно рассчитать количество применяемых извещателей исходя из этого показателя;
  • максимальная длина шлейфа — зависит от суммарного сопротивления шлейфа, но в основном от применяемого кабеля. Сопротивление шлейфа без учета оконечного элемента не должно превышать параметров, указанных в паспорте на приемно-контрольный прибор;
  • сопротивление изоляции шлейфа — определено нормативными документами. Лучше всего использовать кабель проверенных производителей;
  • защита от повреждений — необходимо предусматривать, если шлейф может быть поврежден в процессе эксплуатации;
  • способ прокладки — зависит от конкретного помещения, от его отделки (можно прокладывать разными способами — в штробах, за подвесным потолком, в трубах в полу и пр.);
  • помехозащищенность — прокладка на расстоянии не менее 50 см от сетей электропитания. В основном конечно данный пункт на совести монтажников (но данный момент должен быть прописан в проекте), а если Вы проектируете в BIM, то у Вас есть возможность учесть этот момент;
  • тип кабеля для построения шлейфов — для пожарной сигнализации, только — негорючий.

ПОРОГОВЫЕ ПОЖАРНЫЕ ИЗВЕЩАТЕЛИ

Большинство применяемых сегодня датчиков пожарной сигнализации являются пороговыми. Их главным достоинством является относительно невысокая стоимость. Кроме того, такие системы просты в монтаже, настройке и обслуживании.

Одним из недостатков является невозможность отслеживания динамики развития событий, что, при прочих равных условиях, снижает достоверность и оперативность обнаружения пожара.

Альтернативой является адресно аналоговая пожарная сигнализация, в которой извещатели контролируют количественные значения факторов, сопутствующих возгоранию. Эта информация передается на контрольную панель (прибор), где происходит ее окончательная обработка.

Таким образом, мы имеем интеллектуальную систему со всеми вытекающими отсюда последствиями:

  • высокая цена;
  • сложность настройки и обслуживания.

Безусловно, это не способствует популярности подобных решений, но на особо важных объектах их установка является целесообразной, а в некоторых случаях – безальтернативной.

Не нужно путать адресно аналоговую с адресно пороговой пожарной сигнализацией. Последняя, несмотря на то, что извещатели, входящие в ее состав обладают уникальными адресами, что позволяет локализовать место возможного возгорания с точностью до одного датчика, имеют все таки два состояния: «норма» и «пожар».

Но адресные пороговые системы позволяют реализовывать контроль работоспособности извещателя, что является несомненным достоинством и повышает надежность сигнализации в целом.

  *  *  *

2014-2021 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов

Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Изменение №5. Схема расстановки пожарных извещателей и алгоритмы работы.

Кардинальные изменения коснулись схем расстановки пожарных извещателей. В новых правилах появился пункт 6.6.5, согласно которому каждая точка помещения, должна контролироваться извещателем. Таким образом если раньше схема расстановки извещателей выглядела примерно так:

Рис.7. Старая схема расстановки пожарных извещателей согласно СП 5.13130.2009.

то теперь, согласно новым требованиям, схема расстановки пожарных извещателей должна выглядеть так:

Рис.8. Новая схема расстановки пожарных извещателей согласно СП 484.1311500.2020.

то есть, согласно нового СП, каждая точка помещения должна контролироваться пожарным извещателем, а это значит, что для защиты помещений необходимо будет использовать больше извещателей, для того чтобы они могли перекрывать зоны действия друг друга и контролировать каждую точку защищаемой площади.

Также на схему расстановки и на выбор типа извещателя, который должен контролировать то или иное помещения, влияют новые алгоритмы принятия решения о пожаре. Предусмотрено 3 алгоритма принятия решений – А, В и С.

Рис.9. Новые алгоритмы принятия решения о пожаре.

Согласно данных алгоритмов, также регламентируются и изменения в расстановке извещателей. Данные изменения регламентирует раздел 6.4 СП 484.1311500.202.

Алгоритмы принятия решения о пожаре

6.4.1. Принятие решения о возникновении пожара в заданной ЗКПС должно осуществляться выполнением одного из алгоритмов: A, B или C. Для разных частей (помещений) объекта допускается использовать разные алгоритмы.

6.4.2. Алгоритм A должен выполняться при срабатывании одного ИП без осуществления процедуры перезапроса. В качестве ИП для данного алгоритма могут применяться ИП любого типа, при этом наиболее целесообразно применение ИПР.

6.4.3. Алгоритм B должен выполняться при срабатывании автоматического ИП и дальнейшем повторном срабатывании этого же ИП или другого автоматического ИП той же ЗКПС за время не более 60 сек, при этом повторное срабатывание должно осуществляться после процедуры автоматического перезапроса. В качестве ИП для данного алгоритма могут применяться автоматические ИП любого типа при условии информационной и электрической совместимости для корректного выполнения процедуры перезапроса.

6.4.4. Алгоритм C должен выполняться при срабатывании одного автоматического ИП и дальнейшем срабатывании другого автоматического ИП той же или другой ЗКПС, расположенного в этом помещении.

При использовании адресных автоматических ИП и получении сигнала «Неисправность» от одного или нескольких адресных автоматических ИП в помещении допускается формировать сигнал «Пожар» при срабатывании одного адресного автоматического ИП.

При использовании безадресных автоматических ИП, подключённых в разные, но взаимозависимые линии связи одной ЗКПС, в случае наличия извещения о неисправности одной линии связи или нескольких из них допускается формировать сигнал «Пожар» при срабатывании одного безадресного автоматического ИП.

6.4.5. Выбор конкретного алгоритма осуществляет проектная организация при условии, что алгоритмы A и B могут применяться только для ЗКПС, которые не формируют сигналы управления СОУЭ 4 — 5 типов и АУПТ. Сигналы управления СОУЭ 4 — 5 типов и АУПТ могут быть сформированы от ЗКПС при выполнении алгоритма A, если в данной ЗКПС установлены только ИПР.

ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ

9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.

Средства измерений: мегомметры и омметры по ГОСТ 16862-71.

Измерение электрического сопротивления изоляции проводят:

  • в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
  • при верхнем значении относительной влажности.

Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:

Таблица 1.

Номинальное напряжение цепи, В Напряжение измерительного прибора, В
До 100 включительно
Свыше 100 до 500 включительно
Свыше 500 до 1000 включительно
Свыше 1000
100
250-1000
500-1000
2500
  • перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
  • входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
  • контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
  • электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
  • напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.

При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.

Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.

Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.

Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.

ШЛЕЙФ ОХРАННОЙ СИГНАЛИЗАЦИИ

Давайте разберемся что такое шлейф сигнализации (ШС) и как правильно его организовать. Начнем с того, что охранный шлейф представляет собой соединительную линию (электрическую цепь), объединяющую различные датчики сигнализации (ДС) или извещатели — в контексте данной статьи это синонимы.

Кроме того, в шлейфе присутствует оконечное устройство (ОУ), которое согласует его с приемно-контрольным прибором (ПКП).

В качестве оконечного устройства могут выступать:

  • резисторы;
  • конденсаторы;
  • диоды.

Что именно устанавливается в конце шлейфа зависит от конкретной модели ПКП. Стоит заметить, что в системах охранной сигнализации чаще всего используются резисторы, поэтому будем ориентироваться на этот вариант. Структурная схема шлейфа приведена на рисунке 1.

Я сразу нарисовал все возможные типы датчиков, их работу мы сейчас рассмотрим, но в реальной ситуации используется, как правило, один вариант подключения и извещатели с одинаковой тактикой формирования тревожного извещения.

Возможны и комбинации различных подключений, но они встречаются достаточно редко. Теперь давайте перейдем к рассмотрению основных типов шлейфов и принципа их действия.

Комбинированная система охранной сигнализации под управлением пульта

Комбинированная
система подразумевает под собой
совместное использование неадресной
и адресной технологий. Реализуется это
применением адресных расширителей
совместно с контроллерами «С2000-КДЛ». К
адресным расширителям в свою очередь
подключаются неадресные извещатели.
При таком подключении можно сделать
неадресный извещатель адресным (подключив
один извещатель к одному шлейфу адресного
расширителя). Адресные метки («С2000-АР1»)
разработаны специально для этого таким
образом, что устанавливаются непосредственно
внутри корпуса извещателя (в таком
случае можно контролировать и зону
охраны, и зону вскрытия корпуса этого
извещателя одновременно) Также
одновременно с «С2000-КДЛ» к пульту в этом
случае могут подключаться приёмно-контрольные
приборы (например, «С2000-4»).

Вариант
с использованием только адресных
расширителей удешевляет стоимость
проекта в сравнении с вариантом
использования только адресных извещателей
(или в комбинации с приёмно-контрольными
приборами) Однако в этом случае необходимо
предусмотреть отдельное питание
неадресных извещателей. Одновременно
с этим, при использовании адресных
расширителей рекомендуется ограничивать
длину шлейфов для обеспечения лучшей
помехоустойчивости.

Второй
вариант организации (при использовании
ППКОП) позволяет в случае необходимости
протягивать более длинные шлейфы
сигнализации (т.к. длина ШС ограничивается
сопротивлением соединительных проводов),
не запитывать извещатели отдельно, а
также использовать релейные выходы
ППКОП как системные. То есть, данные
выходы могут управлять исполнительными
устройствами при сработке адресных
устройств (или извещателей, подключенных
к адресным устройствам). Также увеличивается
количество точек управления взятием/снятием
со считывателей.

Рисунок 8. Комбинированная система охранной
сигнализации

Адресную
и комбинированную систему охранной
сигнализации целесообразно использовать
на средних и крупных объектах. Например,
охрана павильонов торговых центров,
офисов с достаточно большим числом
кабинетов и т.п.

В
качестве сетевого контроллера в такой
системе используется пульт и/или
компьютер с установленным на нё м АРМ
«Орион Про ». Пример такой системы
приведён на рисунке 8.

Причины ложного срабатывания пожарной сигнализации

Основные причины ложного срабатывания пожарной сигнализации являются следующими:

  • сильная запыленность рабочих камер точечных оптически-электронных извещателей;
  • попадание внутрь камеры извещателя различных насекомых;
  • электромагнитные наводки, которые влияют на правильную работу входных и выходных каскадов дымовых извещателей;
  • электромагнитные помехи, которые приводят к некорректной работе приемно-контрольного электронного модуля;
  • неправильная установка пожарных извещателей – температурные датчики будут срабатывать, если их расположить возле обогревательных приборов, датчики дыма обеспечат ложное срабатывание в помещении кухни и пр.;
  • неправильная эксплуатация помещений, оборудованных охранной системой от пожаров: нельзя курить там, где есть датчики дыма, нельзя пользоваться источниками открытого пламени в тех местах, где присутствуют соответствующего типа извещатели.

Если учитывать перечисленные причины, ложное срабатывание пожарной сигнализации можно свести к минимуму.

Какие последствия ложной сработки пожарной сигнализации?

Если на объекте произошла ложная сработка пожарной сигнализации, то это может иметь серьезные последствия для владельца этого объекта.

  1. Во-первых, в случае срабатывания системы запустится процесс эвакуации персонала из помещений и будет приостановлено функционирование объекта, до выяснения причин включения сигнализации. Это приведет к простою предприятия или фирмы, что обратится финансовыми потерями.
  2. Во-вторых, если неправильно была настроена автоматическая система пожаротушения, то сработавшая сигнализация может ее запустить, что приведет к воздействию тушащих веществ на материальное имущество, находящееся внутри помещений. Это приведет к его повреждениям, которые во многих случаях могут быть необратимыми.
  3. В-третьих, при срабатывании сигнализации на объект будет направлена команда пожарников. При ложном вызове они попросту потратят время, а возможно в это время где-то будет действительно нужна их помощь.
  4. В-четвертых, если ложное срабатывание охранного комплекса произошло из-за осознанной ее неправильной эксплуатации, то в таком случае владельца объекта может ожидать штраф за сработавшую пожарную сигнализацию.

Заключение

Чтобы объект постоянно был защищен от пожара с помощь сигнализации важно, чтобы она была правильно установлена и настроена. В таком случае можно будет избежать ложных срабатываний, которые, как было представлено выше, имеют много отрицательных сторон, приводящих к порче имущества, финансовым потерям и штрафам со стороны государственных служб

Чтобы избежать таких неприятностей, нужно доверять монтаж и настройку специальным компаниям, которые специализируются на этом.

Проверка пожарной сигнализации: периодичность проверки, правила

Пожарные сигнализации относятся к тем средствам, которые обеспечивают безопасность на различных объектах, гарантируя защиту людей и их имущества от возможного пожара. На сегодняшний день есть множество различных сигнализаций, которые способны своевременно выявлять очаги возгорания, уведомлять о случившимся пожарные службы, поддерживать возможность управления автономными системами пожаротушения объекта, а также обеспечивать эвакуацию персонала и жильцов

Чтобы сигнализация работала слаженно и позволяла выполнять все свои функции, важно чтобы она постоянно находилась в исправном состоянии и соответствовала требованием. Для этого предусмотрена проверка пожарной сигнализации, которая позволит своевременно выявить неполадки в системе и нейтрализовать их

Ложные срабатывания по причине электромагнитных помех на входных каскадах ППКП

На рис. 2 представлен неадресный ШС длиной порядка 300 м, на котором возникла синфазная наводка. Попав на пожарный контрольно-приемный прибор (ППКП), с одного провода она уйдет на общую шину прибора или еще куда-то, в лучшем случае на заземление, а на втором – останется. Ее надо отправить на эту же общую шину или на заземление, ведь для принятия решения о пожаре нас интересует только постоянная составляющая тока в ШС. Что-то уйдет через входное сопротивление ППКП, но это будет зависеть от величины входного сопротивления ППКП со стороны шлейфа сигнализации.

А оставшаяся большая часть? Лучше всего отправить ее на общую шину или на землю через низкое выходное сопротивление источника питания.Только он расположен еще в 100 м от ППКП, и на линию питания до ППКП тоже воздействуют внешние электромагнитные помехи.

И эти помехи уже каким-то образом складываются на входе ППКП. Чего проще разместить источник питания возле или внутри ППКП, как часто делают во всем мире.

И сразу насчет входного сопротивления ППКП со стороны ШС. В конце 90-х – начале 2000-х гг. на отечественном рынке было много охранно-пожарных неадресных ПКП малой и средней информационной емкости. Сконструированы они были для охранной сигнализации, но их использовали и для СПС. В целях удешевления этих ПКП в них были входы для ШС с высоким входным сопротивлением, вплоть до 10 кОм. С таким входным сопротивлением они, как хорошие детекторные приемники, собирали всевозможные электромагнитные воздействия. Наводки поступали и на ПКП, и на сами ИПДОТ.

Отмечу, что в адресных, как проводных, так и беспроводных СПС, такой проблемы не было, так как цифровые протоколы обмена изначально ее исключали.

Допустимые значения

Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.

Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.

Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.

Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.

В общем же случае приняты следующие нормы сопротивления изоляции:

  • кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
  • электроплиты, не предназначенные для переноса, — 1 МОм;
  • электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
  • изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
  • электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
  • устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.

Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.

Напоследок

Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.

Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:

Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Выводы

В новом СП по проектированию мы получили только первую часть задач по исключению ложных срабатываний. Согласен, что пока никаких критериев оценки их предельной вероятности не приводится. Нет и полного перечня мероприятий по их исключению. Но так будет совсем недолго, надеюсь, что скоро вступит в силу новый стандарт, который восполнит недостающую часть. И тогда все проектно-монтажные организации вплотную столкнутся с обязательностью исключения такого негативного явления, как ложные срабатывания, а до тех пор следует руководствоваться теми рекомендациями, которые предусмотрены в новом СП.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector