Протокол ipv4: что это такое и как он работает

Принцип работы протокола IPv4

Internet Protocol представляет собой датаграмму, содержит заголовок и полезную нагрузку. Заголовок шифрует адреса источника и назначение информационного пакета, в то время как полезная нагрузка переносит фактические данные. В отличие от сетей прямой коммутации канала, критичных к выходу из строя любого транзитного узла, передача данных с помощью интернет-протокола IPv4 осуществляется пакетным способом. При этом используются разные маршруты передачи ip-пакетов. Допустима ситуация, когда пакеты нижнего уровня достигают конечного узла раньше, чем пакеты верхнего. Некоторые из них теряются во время трансляции. В этом случае посылается повторный запрос, происходит восстановление потерянных фрагментов.

Каждый сетевой узел в модели TCP/IP имеет собственный IP-адрес. Это обеспечивает гарантированную идентификацию устройств при установке соединения и обмене данными. В то же время отличают два уровня распределения адресов по протоколу TCP/ IPv4 – публичные и частные. Первые уникальны для всех без исключения устройств, осуществляющих обмен данными в общемировой WEB-сети. Например, IP-адрес 8.8.8.8 принадлежит компании Google и является адресом публичного DNS-сервера компании. При построении локальной подсети Ethernet идентификация внутренних устройств передачи данных осуществляется путем назначения собственных ip-адресов для каждой единицы оборудования. Коммутация осуществляется через порты роутера (маршрутизатора), каждому присваивается отдельный сетевой адрес с возможным дополнительным разделением на подсети за счет использования маски IP-адреса.

Изначально адресация в IP-сетях систематизировалась по классовому принципу путем деления на большие блоки, что делало ее неудобной в использовании как конечными пользователями, так и провайдерами. Ей на смену пришла бесклассовая схема под названием Classless Inter-Domain Routing (CIDR).

Основной атрибут протокола TCP/IPv4, его адрес, состоит из тридцати двух бит (четырех байт) и записывается четырьмя десятичными числами от 0 до 255, которые разделены точками. Есть альтернативные способы записи (двоичное, десятичное, без точки и т.д.), но они не меняют принципа работы протокола. В стандартном формате запись CIDR производится в виде IP-адреса, следующего за ним символа «/» и числа, обозначающего битовую маску подсети: 13.14.15.0/24. В данной комбинации число 24 означает количество битов в маске подсети, имеющих приоритетное значение. Полный IP-адрес состоит из 32 бит, маской являются старшие 24, соответственно, общее количество возможных адресов в сети составит 32 — 24 = 8 бит (256 IP-адресов). В этом диапазоне описываются сети, состоящие из различного количества доступных адресов путем их вариативной комбинации. Одна большая сеть может быть раздроблена на несколько более мелких подсетей нижнего уровня.

IPv6 что это?

На практике, IPv6 — простой модуль, который имеет более совершенную структуру и функциональность. Это более свежая версия протокола, который обеспечивает высокую скорость обработки данных со стороны роутера и высокую безопасность серфинга сети. Но если выбирать, ipv4 или ipv6 что лучше? Ответить здесь можно однозначно: протокол IPv6 является приоритетным, так как данная версия более совершенная и новая. Основная проблема при использовании протокола версии 6, заключается в том, что на данный момент не все провайдеры поддерживают его. Модернизация оборудования под новый тип передачи данных стоит больших денег, что существенно замедляет процесс перехода.

Это не значит, что вы не сможете работать на прокси IPv6: подключение наших прокси осуществляется через туннель IPv4, поэтому после приобретения прокси IPv6 у компании proxy-sale.com Вам не нужно будет переживать, предусмотрел ли провайдер поддержку IPv6 — прокси будут стабильно работать. Кроме того, вы не будете испытывать никаких неудобств — можно пользоваться любыми привычными программами.

Все что потребуется знать, так это работает ли нужный вам сайт вообще с протоколом IPv6, для этого существует специальный сервис для проверки ipv6-test.com/validate.php. Необходимо просто вставить ссылку на нужный сайт. Если он поддерживает данную технологию, можете без колебаний использовать прокси IPv6. Теперь постараемся разобраться в том, чем отличается IPv4 от IPv6.

Настройка доступа к интернету по IPv6 через wifi роутер

Но предположим, что все-таки у вас действительно интернет на компьютер заведен по протоколу IPv6. И он не доступен из-за ошибки подключения. В таком случае существует две возможные причины:

  • Если выход в сеть происходит через wifi роутер, то возможно ваша модель не имеет поддержки IPv6 или введены некорректные параметры подключения.
  • Неверные настройки сетевой карты или беспроводного адаптера в операционной системе Windows.

Если у вас старый роутер, то вполне вероятно, что он не может работать с IPv6, поскольку все современные работают с данным протоколом. Но если у вас новая модель, то скорее всего возникла ошибка с настройками подключения к интернету. Для ее исправления необходимо зайти в панель управления своим маршрутизатором в раздел конфигурации IPv6 и прописать те значения, которые требуются. Узнать их нужно у службы технической поддержки своего провайдера.

Основные отличия протоколов IPv4 и IPv6

Как уже было сказано, ключевым недостатком протокола четвертой версии TCP/IPv4 является ограниченная масштабируемость уникальных адресов, присваиваемых для идентификации в сетях взаимодействия. Для создания ip-адресов на уровне программных записей используется 32-х битная система в формате 0.0.0.0 – 255.255.255.255. При построении локальных подсетей вводится дополнительный атрибут «маска подсети», записываемая после символа «/». В результате даже крупные ЛВС, объединенные в Ethernet, чаще всего имеют один публичный ip-адрес, выдаваемый провайдером и закрепленный на уровне шлюза (маршрутизатора). Самостоятельный обмен данными на уровне отдельных устройств частной подсети с выходом в паблик-интернет требует сложного администрирования. Для решения задач маршрутизации, требующих получения статических IP-адресов, понадобятся дополнительные финансовые затраты. 

В интернет-протоколе нового поколения IPv6 для создания адресной маршрутизации используется 128-битная система записи. В IPv6-адресе записи представляют собой восемь 16-битных блоков, разделенных двоеточиями: 2dfc:0:0:0:0217:cbff:fe8c:0. Общее количество ip-адресов, возможных для распределения, может составить в общей сложности 2128 (приблизительно 340 282 366 920 938 000 000 000 000 000 000 000 000). Повсеместное использование данного стандарта позволит полностью решить задачу нехватки сетевых адресов в обозримом будущем. 

С целью упрощения записи адреса в протоколе IPv6 используется вариант сжатия кода, когда смежные последовательности нулевых блоков заменяются парами символов двоеточия. Например, адрес групповой рассылки FFEA:0:0:0:0:CA28:1012:4254 в сжатой форме будет представлен в укороченном виде FFEA::CA28:1012:4254. Данный механизм упрощает процесс записи, хранения и обработки кода. 

По правилам протокола IPv6 назначение сетевых адресов происходит автоматически и уникализируется за счет идентификации на уровне MAC-адреса конкретной единицы оборудования, для которой необходим выход в публичную сеть. Другими словами, каждый домашний компьютер, смартфон, холодильник или стиральная машина с функцией подключения к внешним устройствам получает собственный «белый» ip-адрес для коннекта с другими хостами через интернет. Доступна также произвольная генерация кодов путем администрирования с использованием маршрутизаторов.

Впечатляет минимальный диапазон адресов подсети, получаемых пользователем при подключении по протоколу IPv6. Например, при использовании маски подсети «/128» получаем более 256 адресов.

Спорным является вопрос отличия в скорости передачи трафика по каждому из протоколов. По умолчанию технология протокола IPv6 обеспечивает большую скорость обработки трафика на уровне отдельного оборудования сети в целом. Использование NAT в протоколе IPv4, который обеспечивает трансляцию адресов абонентов и хранение в памяти информации об установленных соединениях, приводит к большой загрузке оборудования. Поэтому в моменты пиковой нагрузки каждый пользователь отмечает резкое падение скорости соединения. 

В протоколе IPv6 не применяется обязательная обработка пакетов и отслеживание уже открытых соединений при маршрутизации доступа к хостам. Отсутствие необходимости трансляции значительно снижает ресурсную нагрузку на сетевые устройства. Для пользователя это означает выравнивание скорости интернет-соединения. Провайдеры в такой ситуации могут использовать менее ресурсоемкое, а значит, более дешевое оборудование.

Что более надежнее IPv6 или IPv4?

Когда IPv6 был впервые запущен, компании требовали шифровать интернет-трафик с помощью IPSec, довольно популярного (но не так широко распространенного, как SSL) стандарта шифрования. Шифрование скремблирует содержимое интернет-трафика, поэтому любой, кто его перехватывает, не может его прочитать.

Но для того, чтобы привлечь больше компаний, это требование превратилось в более сильное предложение. Для шифрования и дешифрования данных требуются вычислительные ресурсы, для которых требуется больше денег. IPSec также может быть реализован на IPv4, что теоретически означает, что IPv6 в равной степени безопасен как IPv4. Вероятно, мы увидим увеличение использования IPSec в целом, по мере перехода, хотя это необходимо не всем потребителям.

Пока мы находимся на переходном этапе, некоторые эксперты утверждают, что пользователи IPv6 на самом деле более подвержены риску, чем те, кто придерживается IPv4. Некоторые интернет-провайдеры используют, в частности, технологии перехода — туннели IPv6, которые делают пользователей более уязвимыми для атаки.

Ожидается, что переход займет еще несколько лет, прежде чем будет завершен, поэтому эти методы перехода будут оставаться на месте в течение некоторого времени.

Другая потенциальная проблема безопасности связана с новой функцией IPv6 — автоконфигурация. Это позволяет устройствам назначать себе IP-адреса без необходимости в сервере. Эти адреса генерируются с использованием уникального MAC-адреса устройства, который имеет каждый телефон, компьютер и роутер. Создается уникальный идентификатор, который сторонние пользователи могут использовать для отслеживания конкретных потребителей и определения их оборудования.

Общие положение IPv6

Похоже, что IPv6 в Linux уже вышел на рабочий уровень и обрел стабильность. Переход на новый протокол продлится долго, но в целом Linux уже готова к этому процессу. Как видно из настоящей статьи, IPv6 имеет ряд преимуществ перед IPv4, включая:

  • расширенное адресное пространство, которое избавляет:
  • от грозящей IPv4 нехватки адресов и необходимости NAT;
  • простоту конфигурации IP-адресов без проверки состояния, благодаря которой не требуется настраивать отдельные хосты;
  • простой способ перенумерования;
  • упрощенный (по сравнению с IPv4) заголовок IP-пакетов;
  • отсутствие фрагментации на маршрутизаторах (свойственной IPv4) — она производится только на хостах, использующих обнаружение PMTU.

Имеются, конечно, у IPv6 на Linux и некоторые недостатки, не упомянутые в настоящей статье. До сих пор, скажем, здесь не реализован LVS (Linux Virtual Server — виртуальный сервер Linux). Зато перевести приложения на IPv6 сравнительно просто. В целом же переход на IPv6 выглядит неизбежным, так как новый протокол дает по сравнению с IPv4 много серьезных преимуществ. Вот только этот процесс потребует времени, так что нам еще предстоит сталкиваться с сетями, где одни машины поддерживают исключительно IPv4, другие — только IPv6, третьи — оба эти протокола. Сегодня, к счастью, уже имеется масса технологий туннелирования, помогающая справляться с такими сетями. Так что даже несмотря на некоторые сложности переходного периода, протокол нового поколения IPv6 обязательно выйдет в сеть и в конце концов значительно улучшит ее.

Дополнительные преимущества протокола IPv6

По сравнению с четвертой версией, в протоколе TCP/IPv6 реализован ряд дополнительных функциональных возможностей: 

  • используется более простой заголовок, из него исключены несущественные параметры, что снижает нагрузку на маршрутизаторы при обработке сетевых запросов;

  • более высокий уровень обеспечения безопасности, аутентификации и конфиденциальности, которые положены в основу данной технологии;

  • в протоколе реализована функция Quality of Service (QoS), позволяющая определять чувствительные к задержке пакеты;

  • при передаче широковещательных пакетов используются многоадресные группы;

  • для реализации технологии мультивещания в IPv6 задействовано встроенное адресное пространство FF00::/8;

  • для повышения безопасности используется поддержка стандарта шифрования IPsec, который позволяет шифровать данные без необходимости какой-либо поддержки со стороны прикладного ПО.

В настоящее время эксперты ведут дискуссии на предмет обеспечения безопасности данных в случае гибридного применения двух протоколов. Провайдеры выстраивают IPv6-туннели для предоставления пользователям IPv4 доступа к высокоуровневому контенту. Применение данной технологии увеличивает риски хакерских атак. Функция автоконфигурации, когда устройства самостоятельно генерируют IP-адрес на основе MAC-адреса оборудования, может быть использована для незаконного отслеживания конфиденциальных данных пользователей. 

IP-адрес[править]

Определение:
IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.

IPv4-адресправить

IPv4 использует 32-битные адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами. У каждого хоста и маршрутизатора в Интеренете есть IP-адрес. IP-адрес не имеет отношения к хосту. Он имеет отношение к сетевому интерфейсу, поэтому иногда хост или маршрутизатор могут иметь несколько IP-адресов.

IP-адреса имеют иерархическую организацию. Первая часть имеет переменную длину и задает сеть, а последняя указывает на хост.

Обычно IP-адреса записываются в виде 4 десятичных чисел, каждое в диапозоне от 0 до 255, разделенными точками (dot-decimal notation). Каждая часть представляет один байт адреса. Например, шестнадцатиричный адрес 80D00297 записывается как 128.208.2.151.

Определение:
Префикс — непрерывный блок пространства IP-адресов, соответствующий сети, в которой сетевая часть совпадает для всех хостов.

Префикс задается наименьшим IP-адресом в блоке и размером блока. Размер определяется числом битов в сетевой части, оставшиеся биты в части хоста могут варьироваться. Таким образом, размер является степенью двойки. Он записывается после префикса IP-адреса в виде слэша и длины сетевой части в битах. В предыдущем примере префикс содержит 28 адресов и поэтому для сетевой части отводится 24 бита. Записывается так: 128.208.2.0/24.

Сетевые адреса, адреса интерфейсов и широковещательные адресаправить

IP адрес может означать одно из трех:

  • Адрес IP сети (группа IP устройств, имеющих доступ к общей среде передаче — например, все устройства в сегменте Ethernet). Сетевой адрес всегда имеет биты интерфейса (хоста) адресного пространства установленными в 0 (если сеть не разбита на подсети);
  • Широковещательный адрес IP сети (адрес для ‘разговора’ со всеми устройствами в IP сети). Широковещательные адреса для сети всегда имеют интерфейсные (хостовые) биты адресного пространства установленными в 1 (если сеть не разбита на подсети).
  • Адрес интерфейса (например Ethernet-адаптер или PPP интерфейс хоста, маршрутизатора, сервера печать итд). Эти адреса могут иметь любые значения хостовых битов, исключая все нули или все единицы — чтобы не путать с адресами сетей и широковещательными адресами.

IPv6-адресправить

Адрес в IPv6 представляется как восемь групп из четырех шестнадцатеричных чисел, разделенных двоеточиями.
При записи адреса используются следующие правила:

  • Если одна и более групп, идущих подряд, равны 0000, то они опускаются и заменяются на двойное двоеточие.
  • Незначащие старшие нули в группах опускаются.
  • Для записи встроенного или отображенного IPv4 адреса последние две группы цифр заменяются на IPv4 адрес.
  • При использовании IPv6 адреса в URL он помещается в квадратные скобки.
  • Порт в URL пишется после закрывающей квадратной скобки.

Типы IPv6 адресовправить

  • Одноадресный (Unicast) — для отправки пакет на конкретный адрес устройства.
    • Global unicast — глобальные адреса. Могут находиться в любом не занятом диапазоне.
    • Link loсal — локальный адрес канала. Позволяет обменивать данными по одному и тому же каналу (подсети). Пакеты с локальным адресом канала не могут быть отправлены за пределы этого канала.
    • Unique local — уникальный локальные адреса. Используются для локальной адресации в пределах узла или между ограниченным количеством узлов.
  • Многоадресный (Multicast) — для отправки пакетов на группу адресов.
    • Assigned — назначенные адреса. Зарезервированные для определённых групп устройств Multicast адреса.
    • Solicited — запрошенные адреса. Остальные адреса, которые устройства могут использовать для прикладных задач.
  • Групповой (Anycast) — для отправки пакета на «любой» индивидуальный адрес. Такой адрес может быть назначен нескольким устройствам. Пакет будет доставлен ближайшему устройству с этим адресом.

Фрагментацияправить

Большинство каналов передачи данных устанавливают максимальную длину пакета (MTU). В случае, когда длина пакета превышает это значение, происходит фрагментация.

Определение:
IP-фрагментация — разбиение пакета на множество частей, которые могут быть повторно собраны позже.

Цели создания IPv6

Может возникнуть вопрос, зачем нужен еще один протокол сетевого уровня, если уже есть протокол IPv4, который работает хорошо. Проблема протокола IPv4 заключается в нехватке IP адресов. Длина IP адресов в протоколе IPv4 — 4 байта, то есть максимальное количество адресов IPv4 примерно 4,3 миллиарда. Когда протокол создавался это было большое количество IP адресов, но сейчас, когда интернет стал очень популярной сетью, стало понятно, что 4 миллиарда адресов это не так уж и много.

Для сравнения, население Земли сейчас составляет более, чем 7 миллиардов, при этом многие люди используют не одно устройство, а несколько, это может быть ноутбук, планшет, смартфон, умные часы и многое другое.

Также, необходимо учитывать сервер и сетевое оборудование в инфраструктуре интернет и сетевых сервисов, а такие технологии, как интернет вещей еще больше увеличивают требования к количеству IP адресов.

Количество доступных адресов IPv4 стремительно сокращается, последний крупный блок адресов IPv4 класса А, был выдан в 2011 году, и уже близко то время, когда какая-то компания или человек захотят подключиться к интернет, но не смогут этого сделать, из-за того что им не хватит адреса IPv4.

Было предложено несколько временных решений, проблемы нехватки IP адресов, которые оказались достаточно успешными. Самые популярные это технология трансляции сетевых адресов NAT, эта технология позволяет подключиться к сети интернет используя всего лишь один IP адрес, сеть, состоящую из большого количества устройств с использованием частных или приватных IP адресов.

Также справиться с проблемой нехватки IP адресов помогла технология бесклассовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR), которая обеспечила возможность использовать маски переменной длины, и распределять IP адреса блоками разной длины, а не классами A, B и C как было раньше.

Протокол IPv6 создан для долговременного решения проблемы нехватки IP адресов. Для этого длина IP адресов в протоколе IPv6 увеличена до 16 байт, количество IP адресов в протоколе IPv6 — 3,4*1038. Такого количества IP адресов хватит, для того чтобы подключить к интернету все устройства, как сейчас так и в достаточно далеком будущем.

Также при разработке IPv6 постарались упростить протокол, для того чтобы маршрутизаторы могли обрабатывать пакеты  IPv6 быстрее, и обеспечили возможность защиты данных с помощью шифрования.

IPv6 считается новым протоколом, однако работа над ним началась еще в 1990 году, когда впервые задумались о возможной проблеме исчерпания адресов IPv4. Первый вариант стандарта протокола IPv6 был принят в документе RFC 1883 в 1995 году, а действующий стандарт протокола IPv6 документ RFC 2460 был принят в 1998 году. Таким образом протоколу IPv6 уже больше 20 лет, и новым его можем называть только по сравнению с протоколом IPv4.

Кто использует IPv6?

В настоящий момент уже более 20 000 веб-сайтов используют протокол IPv6, и среди них такие гиганты как Facebook, Yahoo, Google, Wikipedia, YouTube и другие.

Почему компании и операторы связи должны переходить на IPv6?

  1. Неизбежность – в скором времени протокол IPv6 станет единственным вариантом подключения новых устройств или хостов к сети интернет.
  2. Эффективность – протокол IPv6 устраняет большинство проблем, связанных с конфликтом адресов присущих IPv4, а также предоставляет более оптимизированные соединения для устройств.
  3. Безопасность – протокол IPv6 шифрует трафик и проверяет целостность пакетов, обеспечивая VPN-подобную защиту для стандартного интернет-трафика.

Внедрение IPv6. Что его сдерживает?

Спустя 8 лет после официального запуска протокол IPv6 постепенно внедряется в сети операторов связи, а также интернет-сервис-провайдеров в разных странах, сосуществуя со своим предшественником — протоколом IPv4.

Какие технологии помогут разработчикам цифровизировать Москву
Инновации и стартапы

Активнее всего новой системой адресации пользуются операторы мобильной связи и интернет-провайдеры. Например, по данным отраслевой группы World IPv6 Launch, у T-Mobile USA по протоколу IPv6 проходит почти 95% объема трафика, у Sprint Wireless — 89%. Есть поклонники прогресса и в других странах — индийская Reliance Jio Infocomm (90%), бразильская Claro Brasil (66%). Из российских операторов выше всех в рейтинге, на 83 месте, МТС с 55%.

В страновых рейтингах проникновения IPv6 по оценке Google лидируют Бельгия (52,3%), Германия (50%), Индия (47,8%), Греция (47,6%). У США всего 40,7%, меньше чем, например, у Вьетнама (43,1%). России похвастаться нечем (5,6%). Впрочем, у Китая и вовсе 0,34%.

Динамика доступности IPv6 для пользователей Google

Более консервативными оказались крупные веб-сайты. На сегодняшний день, как сообщает Internet Society, чуть менее 30% веб-сайтов из первой тысячи рейтинга Alexa доступны через IPv6. Еще медленнее на новый протокол переводят свои сайты организации. И пока очень немногие компании используют IPv6 в собственной ИТ-инфраструктуре. Объясняется это довольно просто: перевод корпоративной сети на новый протокол — это сложный, дорогой и долгий процесс. А технология NAT, как уже говорилось, продлила время жизни IPv4.

Маршрутизация[править]

Протокол IP требует, чтобы в маршрутизации участвовали все узлы (компьютеры). Длина маршрута, по которому будет передан пакет, может меняться в зависимости от того, какие узлы будут участвовать в доставке пакета. Каждый узел принимает решение о том, куда ему отправлять пакет на основании таблицы маршрутизации (routing tables).

Определение:
Подсеть — логическое разбиение сети IP.

Маска подсетиправить

Длина префикса не выводится из IP-адреса, поэтому протоколу маршрутизации вынуждены передавать префиксы на маршрутизаторы. Иногда префиксы задаются с помощью указания длины.

Определение:
Маска подсети — двоичная маска, соответствующая длине префикса, в которой единицы указывают на сетевую часть.

То есть маска подсети определяет как будут локально интерпретироваться IP адреса в сегменте IP сети, что для нас весьма важно, поскольку определяет процесс разбивки на подсети.

Стандартная маска подсети — все сетевые биты в адресе установлены в ‘1’ и все хостовые биты установлены в ‘0’.
Выполненение операции И между маской и IP-адресом позволяет выделить сетевую часть.

О маске подсети нужно помнить три вещи:

  • Маска подсети предназначена только для локальной интерпретации локальных IP адресов (где локальный значит — в том же сетевом сегменте);
  • Маска подсети — не IP адрес — она используется для локальной модификации интерпретации IP адреса.

Бесклассовая междоменная маршрутизацияправить

Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Таблицы маршрутизации со временем сильно растут, и с этим нужно что-то делать. Маршрутизатор может узнавать о расположении IP-адресов по префиксам различной длины. Но вместо того чтобы разделять сеть на подсети, мы объединим несколько коротких префиксов в один длинный. Этот процесс называется агрегацией маршрута (route aggregation). Длинный префикс, полученный в результате, иногда называют суперсетью (supernet), в противоположность подсетям с разделением блоков адресов.

При агрегации IP-адреса содержатся в префиксах различной длины. Один и тот же IP-адрес может рассматриваться одним маршрутизатором как часть блока /22 (содержащего 210 адресов), а другим — как часть более крупного блока /20 (содержащего 212 адресов). Это зависит от того, какой информацией обладает маршрутизатор. Такой метод называется CIDR (Classless InterDomain Routing — бесклассовая междоменная маршрутизация).

Также префиксы могут пересекаться. Согласно правилу, пакеты передаются в направлении самого специализированного блока, или самого длинного совпадающего префикса (longest matching prefix), в котором находится меньше всего IP-адресов.

По сути CIDR работает так:

  • Когда прибывает пакет, необходимо определить, относится ли данный адрес к данному префиксу; для этого просматривается таблица маршрутизации. Может оказаться, что по значению подойдет несколько записей. В этом случае используется самый длинный префикс. То есть если найдено совпадение для маски /20 и /24, то для выбора исходящей линии будет использоваться запись, соответствующая /24.
  • Однако этот процесс был бы трудоемким, если бы таблица маршрутизации просматривалась запись за записью. Вместо этого был разработан сложный алгоритм для ускорения процесса поиска адреса в таблице (Ruiz-Sanchez и др., 2001).
  • В маршрутизаторах, предполагающих коммерческое использование, применяются специальные чипы VLSI, в которые данные алгоритмы встроены аппаратно.

Классы IP-сетейправить

Раньше использовали классовую адресацию.

Сколько бит используется сетевым ID и сколько бит доступно для идентификации хостов (интерфейсов) в этой сети, определяется сетевыми классами.

Всего 5 классов IP-адресов: A, B, C, D, E.

Их структура и диапазоны указаны на рисунке.

Существует также специальные адреса, которые зарезервированы для ‘несвязанных’ сетей — это сети, которые используют IP, но не подключены к Internet. Вот эти адреса:

  • Одна сеть класса A: 10.0.0.0
  • 16 сетей класса B: 172.16.0.0 — 172.31.0.0
  • 256 сетей класса С: 192.168.0.0 — 192.168.255.0

Стандартные маски подсети для трех классов сетей:

  • A класс — маска подсети: 255.0.0.0
  • B класс — маска подсети: 255.255.0.0
  • C класс — маска подсети: 255.255.255.0

Что это: IPv4 и IPv6?

IPv4 – один из основных интернет-стандартов, реализованных на правилах взаимодействий между сетями на онлайн-просторах. Его первая версия разработана в конце 60-х годов прошлого века специально для компьютерной сети американского Министерства обороны – Arpanet (Advanced Research Projects Agency Network, Сеть Агентства передовых исследований). Именно она считается прародителем интернета. В работе этот протокол применяет 32-битные поля источника и адресата, ограничивающие допустимое пространство до 4,3 млрд. адресов. А на сегодня их общее количество уже перевалило через 20 млрд., и цифра постоянно увеличивается.

IPv4 применяется для обеспечения качественного соединения в сетях, основываясь на коммутационных пакетах. Здесь реализована технология передачи датаграмм, имеющая непосредственную связь между текущей нагрузкой на трафик и пропускной способностью, временем доставки. Но здесь нет гарантий, что информация будет доставлена или доставлена только один раз, без повторов. Также в IPv4 не предусмотрено определенной последовательности действий.

Ограничения 4 версии интернет-протокола стимулировали работы над более усовершенствованным поколением еще в первой половине 90-х годов прошлого века. Разрабатывала это Целевая группа Internet Engineering Task Force (IETF). Специалистам удалось решить проблему с ограничением количества адресов, теперь их предоставляется бесконечное множество. Не актуальным стало и исчерпание IP-адреса. Но все же IPv4 и IPv6 сети достаточно схожи между собой: 6 версия интернет-протокола обеспечивает абсолютную передачу данных по разным сетям, основываясь на уникальных принципах проектирования, которые были реализованы в 4 поколении. Но она уже применяет 128-битные адреса, способные обеспечить «именем» более, чем 34*1037 пользователей. А этого более, чем хороший запас.

Удаленный офис
и онлайн-продажи

За 1 день.
С бесплатным тестовым периодом.

Конфигуратор удаленных рабочих мест

Рабочие места для команды за 1 день

Запросить КП

Особые IP адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

  • 0.0.0.0 — представляет адрес шлюза по умолчанию, т.е. адрес компьютера, которому следует направлять информационные пакеты, если они не нашли адресата в локальной сети (таблице маршрутизации);
  • 255.255.255.255 – широковещательный адрес. Сообщения, переданные по этому адресу, получают все узлы локальной сети, содержащей компьютер-источник сообщения (в другие локальные сети оно не передается);
  • «Номер сети».«все нули» – адрес сети (например 192.168.10.0);
  • «Все нули».«номер узла» – узел в данной сети (например 0.0.0.23). Может использоваться для передачи сообщений конкретному узлу внутри локальной сети;
  • Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, пакет с адресом 192.190.21.255 доставляется всем узлам сети 192.190.21.0. Такая рассылка называется широковещательным сообщением (broadcast). При адресации необходимо учитывать те ограничения, которые вносятся особым назначением некоторых IP-адресов. Так, ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей. Отсюда следует, что максимальное количество узлов, приведенное в таблице для сетей каждого класса, на практике должно быть уменьшено на 2. Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних двоичных единиц.
  • Особый смысл имеет IP-адрес, первый октет которого равен 127.х.х.х. Он используется для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы «петля». Данные не передаются по сети, а возвращаются модулям верхнего уровня как только что принятые. Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127. Этот адрес имеет название loopback. Можно отнести адрес 127.0.0.0 ко внутренней сети модуля маршрутизации узла, а адрес 127.0.0.1 — к адресу этого модуля на внутренней сети. На самом деле любой адрес сети 127.0.0.0 служит для обозначения своего модуля маршрутизации, а не только 127.0.0.1, например 127.0.0.3.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети — они ограничены либо сетью, к которой принадлежит узел-источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector