Водород. заблуждения
Содержание:
- Принцип работы
- Кислород: химические свойства
- Управление горением
- Почему же в кислороде горение идет энергичнее, чем в воздухе?
- Горение древесины
- [править] Применение
- Химические свойства
- История открытия
- Правила безопасности при использовании, хранении и транспортировке кислорода
- Реакции горения
- Симптомы у человека при недостатке кислорода в воздухе
- История открытия кислорода
- Производство кислорода
- Элемент в окружающей среде
Принцип работы
Для развития пожара должны присутствовать три компонента: кислород, температура (энергия) и горючий материал. Если один из этих трех компонентов удален, огня не будет. По этому принципу строится технология предотвращения пожара. Уменьшая содержание кислорода, огонь буквально лишается «воздуха для дыхания».
Воспламеняемость горючих материалов напрямую связана с концентрацией кислорода в окружающем воздухе и, соответственно, снижается с уменьшением этой концентрации. Если содержание кислорода в воздухе уменьшается, для возгорания горючего материала требуется гораздо больше энергии. Энергия, требуемая для этого, выше для воспламенения, чем для поддержания горения. Снижение концентрации кислорода вызывает решающее замедление скорости химических и физических процессов во время горения. Это означает, что возможность образования пожара и интенсивность пожара в среде с пониженной концентрацией кислорода существенно меньше, чем при нормальных условиях. Ниже предельного значения концентрации кислорода в окружающем воздухе самостоятельное горение веществ становится невозможным. Это значение, которое называется «граница воспламенения», специфично для различных веществ.
При снижении концентрации кислорода ниже 20,9 об.% 02 увеличивается противопожарная защита горючих веществ, так как скорость химических реакций уменьшается. При достижении расчетной концентрации, противопожарная защита полностью обеспечивается.
Кислород: химические свойства
Ключевые слова конспекта: химические свойства простых веществ-неметаллов, характеристика элемента? простое вещество — кислород O2, получение кислорода.
Характеристика элемента кислорода
Кислород О – элемент № 8, 2-й период, VIA группа. Электронная конфигурация атома кислорода 1s22s22p4.
Валентные возможности кислорода – II и III (с учётом возможности образования связи по донорно–акцепторному механизму, например в ионе гидроксония Н3О+). Возможные степени окисления кислорода:
+2 – в соединении со фтором OF2;+1 – в соединении со фтором О2F2; – в простых веществах O2 (кислород), O3 (озон);–1 – в пероксидах (Н2O2, Na2O2);–2 – во всех остальных соединениях кислорода (кроме супероксидов).
Кислород – самый распространённый элемент в земной коре. Кислороду присуща аллотропия, элемент кислород образует два простых вещества – киcлород O2 и озон O3.
Кислород – простое вещество O2
Кислород является молекулярным веществом, молекула двухатомна. В молекуле кислорода связь ковалентная неполярная.
При обычных условиях кислoрoд – газ без цвета и запаха, тяжелее воздуха, плохо растворим в воде (несколько лучше, чем азот). В жидком состоянии кислород светло-голубого, в твёрдом – синего цвета.
Кислород является хорошим окислителем. Реагирует практически со всеми простыми веществами (кроме инертных газов, галогенов, благородных металлов). Так, например, киcлород окисляет металлы:
O2 + 2Zn = 2ZnO3O2 + 4Al = 2Al2O3O2 + 2Cu = 2CuO2O2 + 3Fe = Fe3O4
Кислорoд является также окислителем многих неметаллов. В некоторых случаях, для того чтобы началась реакция, требуется нагревание:
O2 + C = CO2O2 + S = SO25O2 + 4Р = 2Р2O5O2 + 2Н2 = 2Н2O
Кислoрод реагирует с азотом в электрической дуге (реакция обратима, идёт с небольшим выходом NO):
В кислороде сгорают многие горючие вещества, практически все органические вещества:
2O2 + СН4 = СO2 + 2Н202Н2S + 3O2 = 2SO2 + 2Н20
Кислoрoд окисляет многие сложные вещества – как неорганические, так и органические:
O2 + 4Fe(OH)2 + 2Н20 = 4Fe(OH)3O2 + 2СН3СНО = СН3СООН.
В промышленности кислород получают перегонкой воздуха. Способ основан на том, что у азота и кислорода разные температуры кипения. В лаборатории киcлорoд получают:
а) электролизом воды:
б) разложением пероксида водорода под действием катализатора:
в) разложением перманганата калия при нагревании:
г) разложением хлората калия (бертолетовой соли) при нагревании:
д) разложением нитратов щелочных металлов при нагревании:
Управление горением
Эффективный технологический нагрев требует возврата максимально возможной части теплоты сгорания топлива в обрабатываемый материал. Есть много возможностей для потерь в процессе нагрева. Как правило, основная потеря — это явное тепло, уходящее с отходящими газами (т. Е. С дымовыми газами ). Температура и количество отходящего газа указывают на его теплосодержание ( энтальпию ), поэтому поддержание низкого его количества сводит к минимуму потери тепла.
В идеальной печи поток воздуха для горения будет согласован с потоком топлива, чтобы дать каждой молекуле топлива точное количество кислорода, необходимое для полного сгорания. Однако в реальном мире горение не происходит идеально. Несгоревшее топливо (обычно CO и H2), выбрасываемый из системы, представляет собой потерю теплотворной способности (а также угрозу безопасности). Поскольку горючие вещества в отходящем газе нежелательны, а присутствие в нем непрореагировавшего кислорода представляет минимальные проблемы безопасности и защиты окружающей среды, первый принцип управления горением заключается в обеспечении большего количества кислорода, чем теоретически необходимо для обеспечения сгорания всего топлива. Для метана ( CH4) для горения, например, требуется чуть больше двух молекул кислорода.
Однако второй принцип управления горением — не использовать слишком много кислорода. Правильное количество кислорода требует трех типов измерения: во-первых, активного контроля расхода воздуха и топлива; во-вторых, измерение кислорода в отходящих газах; и в-третьих, измерение горючих газов в отходящих газах. Для каждого процесса нагрева существует оптимальное условие минимальных потерь тепла отходящими газами с приемлемыми уровнями концентрации горючих веществ. Сведение к минимуму избытка кислорода дает дополнительную выгоду: при заданной температуре отходящего газа уровень NOx является самым низким, когда избыток кислорода поддерживается минимальным.
Соблюдению этих двух принципов способствует обеспечение баланса материала и тепла в процессе сгорания. Материальный баланс напрямую связывает соотношение воздух / топливо в процентах от O2в дымовом газе. Тепловой баланс связывает тепло, доступное для заряда, с общим чистым теплом, произведенным при сгорании топлива. Дополнительные материальные и тепловые балансы могут быть выполнены для количественной оценки теплового преимущества от предварительного нагрева воздуха для горения или его обогащения кислородом.
Почему же в кислороде горение идет энергичнее, чем в воздухе?
Обладает ли чистый кислород какими-то особыми свойствами, которых нет у кислорода воздуха? Конечно, нет. И в том и в другом случае мы имеем один и тот же кислород, с одинаковыми свойствами. Только в воздухе кислорода содержится в 5 раз меньше, чем в таком же объеме чистого кислорода, и, кроме того, в воздухе кислород перемешан с большими количествами азота, который не только сам не горит, но и не поддерживает горение. Поэтому, если непосредственно около пламени кислород воздуха уже израсходован, то другой его порции необходимо пробиваться через азот и продукты горения. Следовательно, более энергичное горение в атмосфере кислорода можно объяснить более быстрой подачей его к месту горения. При этом процесс соединения кислорода с горящим веществом идет энергичнее и тепла выделяется больше. Чем больше в единицу времени подается к горящему веществу кислорода, тем пламя ярче, тем температура выше и тем сильнее идет горение.
Горение древесины
Древесина является самым распространенным горючим материалом в условиях пожара, По структуре она представляет собой пористый материал с множеством ячеек, заполненных воздухом. Стенки ячеек состоят из целлю- лозы и лигнина. Объем пустот в древесине превышает объем твердого вещества.
Характер строения древесины определяет весьма низкую ее теплопроводность и связанные с нею быструю воспламеняемость и медленный прогрев внутренних слоев. При соприкосновении древесины с источником воспламенения, например пламенем, происходит быстрое нагревание тонкого поверхностного слоя ее, испарение влаги и затем разложение. Продукты разложения древесины, полученные при температуре ниже 250 °С, содержат в основном водяной пар, диоксид углерода С02 и немного горючих газов, поэтому гореть не способны. Продукты разложения, полученные при 250—260°С, содержат большое количество оксида углерода СО и метана и становятся горючими. Они воспламеняются от источника зажигания (пламени) и с этого момента древесина начинает самостоятельно гореть.
Как и у жидкостей, наименьшая температура древесины, при которой продукты разложения способны воспламеняться от источника зажигания, называется температурой воспламенения
древесины.
Температура воспламенения древесины зависит от степени ее измельчения. Так температура воспламенения сосновой древесины 255 °С, а сосновых опилок 230 °С.
После воспламенения температура верхнего слоя древесины повышается за счет тепла, излучаемого пламенем, и достигает 290—300°С. При этой температуре выход газообразных продуктов максимальный и высота, факела пламени наибольшая. В результате разложения верхний слой древесины превращается в древесный уголь, который в данных условиях гореть не может, так как кислород, поступающий из воз- духа, весь вступает в реакцию в зоне горения пламени. Температура угля на поверхности к этому времени достигает 500—700 °С. По мере выгорания верхнего слоя древесины и превращения его в уголь нижележащий слой древесины прогревается до 300 °С и разлагается. Таким образом, пламенное горение древесины при образовании на ее поверхности небольшого слоя угля еще не прекращается, однако скорость выхода продуктов разложения начинает уменьшаться. В дальнейшем рост слоя угля и уменьшение выхода продуктов разложения приводят к тому, что пламя остается только у трещин угля, и кислород может достигать поверхности угля. С этого момента начинается горение угля и одновременно продолжается горение продуктов разложения. Толщина слоя угля, которая к этому моменту достигает 2—2,5см, остается постоянной, так как наступает равновесие между линейной скоростью выгорания угля и скоростью прогрева и разложения древесины. Одновременное горение угля и продуктов разложения древесины продолжается до тех пор, пока не превратится в уголь вся древесина. После этого выход газообразных продуктов разложения древесины прекращается, а продолжается только горение угля.
Таким образом, процесс горения древесины состоит из двух фаз: пламенного горения и горения угля.
Между ними имеется переходная фаза, характеризуемая одновременным протеканием двух фаз.
В условиях пожара основную роль играет первая фаза, так как она сопровождается выделением большого объема нагретых до высокой температуры продуктов сгорания и интенсивным излучением (пламя). Все это способствует быстрому распространению горения и увеличению площади пожара. Поэтому при тушении пожаров в первую очередь стараются ликвидировать очаги, где протекает первая фаза горения.
[править] Применение
Кислород воздуха имеет чрезвычайно важное значение для процессов горения. Сжигая различные виды топлива, получают тепло, которое используют для удовлетворения самых различных потребностей, в том числе для преобразования его в механическую и электрическую энергию
При участии кислорода воздуха сгорает топливо на теплоэлектростанциях, топливо в двигателях автомобилей, выжигают металлические руды на заводах цветной металлургии.
Сварка и резка металлов
Чистый кислород с ацетиленом широко используют для так называемой автогенной сварки стальных труб и других металлических конструкций и их резки. Для этого служит специальная горелка, который состоит из двух металлических трубок, вставленных друг в друга. В пространство между трубками пропускают ацетилен и зажигают, а затем по внутренней трубке пропускают кислород. Оба газа, подаются из баллонов под давлением. Температура в кислородно-ацетиленовом пламени — до 2000 ° C, при такой температуре плавится большинство металлов.
В медицине
Кислород — биогенный химический элемент, обеспечивающий дыхание большинства живых организмов на Земле. Физиологическое действие кислорода разностороннее, решающее значение в его лечебном эффекте имеет способность возмещать дефицит кислорода в тканях организма при гипоксии (недостаточного снабжения тканей кислородом или нарушения его усвоения).
Ингаляцией (вдыханием) кислорода широко пользуются при различных заболеваниях, сопровождающихся гипоксией (нехваткой кислорода): при заболеваниях органов дыхания (пневмония, отек легких и т. д.), сердечно-сосудистой системы (сердечная недостаточность, коронарная недостаточность, резкое падение артериального давления и т. п.), отравлениях угарным газом, синильной кислотой, удушающими веществами (хлор, фосген и др.), а также при других заболеваниях с нарушением функции дыхания и окислительных процессов.
В анестезиологической практике кислород широко применяется в смеси с ингаляционными наркотическими анальгетиками. Чистым кислородом и смесью его с углекислотой пользуются при ослаблении дыхания в послеоперационном периоде, при интоксикациях и т. д.
Широко пользуются кислородом для так называемой гипербарической оксигенации — применения кислорода под повышенным давлением. Установлена высокая эффективность этого метода в хирургии, интенсивной терапии тяжелых заболеваний, особенно в кардиологии, реаниматологии, неврологии и других областях медицины.
Применяют также энтеральную оксигенотерапию (введение кислорода в кишечник или желудок) путем введения в желудок кислородной пены, применяемой в виде так называемого кислородного коктейля. Используется для общего улучшения обменных процессов в комплексной терапии сердечно-сосудистых заболеваний, нарушений обмена веществ и других патологических состояний, связанных с кислородной недостаточностью организма.
Чистым кислородом пользуются для дыхания также летчики при высоких полетах, водолазы, на подводных лодках и т. п.
Кислородные подушки применяют при некоторых заболеваниях для облегчения дыхания.
Химические свойства
Кислород является химически активным веществом. Он способен вступать в реакции с множеством других веществ, однако для протекания большинства этих реакций необходима более высокая, чем комнатная, температура. При нагревании кислород реагирует с неметаллами и металлами.
Если стеклянную колбу наполнить кислородом и внести в нее ложечку с горящей серой, то сера вспыхивает с образованием яркого пламени и быстро сгорает (рис. 80).
Химическую реакцию, протекающую в этом случае, можно описать следующим уравнением:
В результате реакции образуется вещество SO2, которое называется сернистым газом. Сернистый газ имеет резкий запах, который вы ощущаете при зажигании обычной спички. Это говорит о том, что в состав головки спички входит сера, при горении которой и образуется сернистый газ.
Подожженный красный фосфор в колбе с кислородом вспыхивает еще ярче и быстро сгорает, образуя густой белый дым (рис. 81).
При этом протекает химическая реакция:
Белый дым состоит из маленьких твердых частиц продукта реакции — P2O5.
Если в колбу с кислородом внести тлеющий уголек, состоящий в основном из углерода, то он также вспыхивает и сгорает ярким пламенем (рис. 82).
Протекающую химическую реакцию можно представить следующим уравнением:
Продуктом реакции является CO2, или углекислый газ, с которым вы уже знакомы. Доказать образование углекислого газа можно, добавив в колбу немного известковой воды. Помутнение свидетельствует о присутствии CO2 в колбе.
Возгорание уголька можно использовать для отличия кислорода от других газов. Если в сосуд (колбу, пробирку) с газом внести тлеющий уголек и он вспыхнет, то это указывает на наличие в сосуде кислорода.
Кроме неметаллов, с кислородом реагируют и многие металлы. Внесем в колбу с кислородом раскаленную стальную проволоку, состоящую в основном из железа. Проволока начинает ярко светиться и разбрасывать в разные стороны раскаленные искры, как при горении бенгальского огня (рис. 83).
При этом протекает следующая химическая реакция:
В результате реакции образуется вещество Fe3O4 (железная окалина). В состав формульной единицы этого вещества входят три атома железа, причем один из них имеет валентность II, а два других атома имеют валентность III. Поэтому формулу этого вещества можно представить в виде FeO * Fe2O3.
Реакцию железа с кислородом используют для резки стальных изделий. Для этого определенный участок детали сначала нагревают с помощью кислородногазовой горелки. Затем направляют на нагретое место струю чистого кислорода, для чего перекрывают кран поступления горючего газа в горелку. Нагретое до высокой температуры железо вступает в химическую реакцию с кислородом и превращается в окалину. Так можно разрезать очень толстые железные детали.
История открытия
Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).
-
- 2HgO →ot 2Hg + O2↑
Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.
Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.
Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.
Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.
Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.
Правила безопасности при использовании, хранении и транспортировке кислорода
- Необходимо внимательно следить за тем, чтобы кислород не находился в контакте с горючими легковоспламеняющимися веществами.
- Следить за тем, чтобы не было утечки, поскольку даже при незначительном увеличении количества кислорода в воздухе может произойти самовозгорание горючих материалов или волос на теле, одежде и т.п.
- Все лица, в том числе и сварщики, работающие с кислородом никогда не должны надевать рабочую одежду, на которых присутствуют следы смазки или масла.
- Запрещено применение O2 вместо воздуха для запуска дизельного двигателя.
- Запрещено его использование с целью удаления пыли с рабочей одежды. При случайном попадание избыточного объема кислорода на одежду потребуется много времени для выветривания, вплоть до нескольких часов.
- Запрещено применение для освежения воздуха.
- Вся кислородная аппаратура, кислородопроводы и баллоны необходимо тщательно обезжиривать. В процессе эксплуатации исключить возможность попадания и накопления масел и жиров на поверхности деталей, работающих в контакте с O2.
- Оборудование, работающее в непосредственном контакте с кислородом не должно содержать пыль и металлические частицы во избежание самовозгорания.
- Перед проведением ремонтных работ или освидетельствованием трубопроводов, баллонов, стационарных и передвижных реципиентов или другого оборудования, используемого для хранения и транспортирования газа, необходимо продуть все внутренние объемы воздухом. Разрешается начинать работы только после снижения объемной доли O2 во внутренних объемах оборудования до 23%.
- Запрещается баллоны, автореципиенты и трубопроводы, предназначенные для транспортирования кислорода, использовать для хранения и транспортирования других газов, а также производить какие-либо операции, которые могут загрязнить их внутреннюю поверхность.
- При погрузке, разгрузке, транспортировании и хранении баллонов должны применяться меры, предотвращающие их падение, удары друг о друга, повреждение и загрязнение баллонов маслом. Баллоны должны быть защищены от атмосферных осадков и нагрева солнечными лучами и другими источниками теплоты.
- На всех кислородных вентилях должна находится табличка “кислород маслоопасно”.
Реакции горения
Общим для рассмотренных нами реакций является то, что при их протекании выделяется много света и теплоты. Очень многие вещества именно так взаимодействуют между собой.
Рассмотренные выше реакции простых веществ серы, фосфора, углерода и железа с кислородом являются реакциями горения.
Реакциями горения называются химические реакции, протекающие с выделением большого количества теплоты и света.
Кроме простых веществ, в кислороде горят и многие сложные вещества, например метан CH4. При горении метана образуются углекислый газ и вода:
В результате этой реакции выделяется очень много теплоты. Вот почему ко многим домам подведен природный газ, основным компонентом которого является метан. Теплота, выделяющаяся при горении метана, используется для приготовления пищи и других целей.
Некоторые химические реакции протекают очень быстро. Такие реакции называют взрывными или просто взрывами. Например, взаимодействие кислорода с водородом может протекать в форме взрыва.
Горение может протекать не только в кислороде, но и в других газах. Об этих процессах вы узнаете при дальнейшем изучении химии.
Симптомы у человека при недостатке кислорода в воздухе
Нормальное содержание O2 в воздухе находится в пределах 21%. При понижении его количества в результате сгорания или вымещения инертными газами (аргон, гелий) возникает недостаток кислорода, последствия, и симптомы которого указаны в таблице ниже.
Содержание O2 (% по объему) | Последствия и симптомы (при атмосферном давлении) |
---|---|
15-19% | Снижение работоспособности. Может произойти нарушение координации. Первые симптомы могут проявиться у людей с нарушением коронарного кровообращения, общего кровообращения или работы легких |
12-14% | Затруднение дыхания, учащение пульса, нарушение координации и восприятия. |
10-12% | Еще более глубокое и учащенное дыхание, потеря здравомыслия, посинение губ. При нахождении в атмосфере, содержащем 12% и менее O2, потеря сознания происходит внезапно и так быстро, что у человека не остается времени на то, чтобы предпринять какие-то меры. |
8-10% | Нарушение мыслительной деятельности, обморок, потеря сознания, мертвенно-бледное лицо, синие губы, рвота. |
6-8% | 8 мин — 100% летальный исход; 6 мин — 50%; 4-5 мин — возможно спасение жизни с медицинской помощью. |
4-6%. | Через 40 секунд — кома, конвульсии, прекращение дыхания, смерть от нехватки кислорода. |
При наличии вышеуказанных симптомов пострадавшего следует быстро вынести на свежий воздух и дать ему подышать кислородом или сделать искусственное дыхание. Необходима немедленная медицинская помощь.
История открытия кислорода
Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Он испытывал его физиологическое действие на себе и на мышах. Пристли установил, что после вдыхания газа некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с O2. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал этот газ, даже не догадываясь, что он описал. А вот лавры открытия кислорода принадлежат Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier), который и дал ему имя.
Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней. Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.
Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что O2 обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные «оксигениума» (например: соляная, сероводородная, синильная и др.).
Производство кислорода
Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке во многих странах. Но от идеи до технического воплощения часто лежит «дистанция огромного размера»…
Особенно быстрое развитие кислородной промышленности началось после изобретения академиком П.Л.Капицей турбодетандера и создания мощных воздухоразделительных установок.
Проще всего получить кислород из воздуха, поскольку воздух — не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°С. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°С. Можно сказать, что проблема получения кислорода — это проблема получения холода.
Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами.
Чтобы получить жидкий воздух с помощью поршневых детандеров, нужны были давления порядка 200 атмосфер. КПД установки был немногим выше, чем у паровой машины. Установка получалась сложной, громоздкой, дорогой. В конце тридцатых годов советский физик академик П.Л.Капица предложил использовать в качестве детандера турбину. Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.
Турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.
Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода.
Элемент в окружающей среде
Земная кора состоит в основном из кремниево-кислородных минералов, и многие другие элементы присутствуют в виде их оксидов. Газообразный кислород составляет пятую часть атмосферы. О2 в атмосфере Земли образуется в результате фотосинтеза растений, он накапливался в течение длительного времени, поскольку они использовали обильные запасы углекислого газа в ранней атмосфере и выделяли кислород.
Почти все химические вещества, кроме инертных газов, связываются с кислородом с образованием соединений. Вода, H2O и кремнезём, SiO2, основной компонент песка, являются одними из наиболее распространённых двойных кислородных соединений. Среди соединений, которые содержат более двух элементов, наиболее распространёнными являются силикаты, которые образуют большинство пород и почв. Другими соединениями, которые в изобилии встречаются в природе, являются карбонат кальция (известняк и мрамор), сульфат кальция (гипс), оксид алюминия (боксит) и различные оксиды железа, которые используются в качестве источника металла.
Элемент встречается во всех видах минералов. Некоторые общие примеры включают оксиды, карбонаты, нитраты, сульфаты и фосфаты. Оксиды — это химические соединения, которые содержат кислород и ещё один элемент. Карбонаты — это соединения, которые содержат кислород, углерод и ещё один элемент. В качестве примера можно привести карбонат натрия или соду, кальцинированную соду или солевую соду (Na2CO3), которая часто встречается в моющих и чистящих средствах.
Нитраты, сульфаты и фосфаты также содержат кислород. Другими элементами в этих соединениях являются азот, сера или фосфор плюс ещё один элемент. Примерами этих соединений являются нитрат калия или селитра (KNO3), сульфат магния или соли Эпсома (MgSO4) и фосфат кальция (Ca3 (PO 4)2).