Лучевая нагрузка: как ее уменьшить и сколько можно делать кт?
Содержание:
- Чем вредно ионизирующее (рентгеновское) облучение?
- Старые методики замеров до 1990 года
- Расчет эффективной дозы
- Какова допустимая доза облучения при медицинских исследованиях?
- Как радиоактивное ионизирующее излучение воздействует на организм человека?
- Учет доз облучения
- Рекомендации
- Как уменьшить вред воздействия ионизирующего облучения?
- Обзор
- Текст подготовил
- Особенности лучей
Чем вредно ионизирующее (рентгеновское) облучение?
По данным актуальных исследований библиотек РИНЦ и PubMed, а также в соответствии с действующими нормами радиационной безопасности населения РФ (НРБ), не рекомендуется облучается более чем на 15-20 мЗв в год. На новых КТ-аппаратах (МСКТ), в зависимости от исследуемых зон, это около 5-8 сканирований.
На аппаратах старого образца из-за меньшего количества чувствительных датчиков, срезов и большего времени сканирования лучевая нагрузка выше.
После КТ радиоактивные элементы не сохраняются и не накапливаются в организме человека. X-ray лучи сканируют только зону интереса, и это длится 30-45 секунд.
Организм человека содержит необходимые ему химические элементы — водород, железо, калий и др. Распад этих элементов — тоже в своем роде является радиоактивным процессом, который происходит ежесекундно, на протяжении всей жизни человека. Некоторое количество радиации человек получает из атмосферы, воды, от природных радионуклидов. Это называется естественным радиационным фоном.
Доза радиации, полученная пациентом в рамках медицинских обследований не велика — это справедливо как для рентгена, так и для КТ. Однако организм каждого человека по-разному реагирует на воздействие x-ray излучения: если одни пациенты сравнительно легко переносят лучевую нагрузку, равную 50 мЗв, то для других аналогичной по воздействию будет нагрузка 15 мЗв.
Поскольку норма относительна, а порог, при котором негативного воздействия гарантированно не произойдет, отсутствует, принято считать, все виды исследований с применением ионизирующего излучения потенциально вредны. Организм взрослого человека более резистентен к радиации, а дети более чувствительны. Однако у некоторых пациентов имеются отягчающие факторы в анамнезе или индивидуальные особенности организма.
Например, по одним данным считается, что у годовалого ребенка, которому проводится КТ брюшной полости, пожизненный риск онкологии возрастает на 0,18%. Однако если ту же процедуру проходит взрослый или пожилой человек, то этот риск будет существенно ниже. Считается, что регулярное дозированное рентгеновское облучение даже полезно, поскольку организм адаптируется к лучевой нагрузке, и его защитные силы возрастают.
По данным другого исследования, проводимого на когортной группе детей в период с 1996 по 2010 гг. в США, «ежегодно по стране 4 миллиона детских компьютерных томографов головы, живота / таза, грудной клетки или позвоночника вызовут 4870 случаев рака. Этот процент уменьшится, если сократить количество исследований, доза облучения в которых превышает 20 мВз».*
*“The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk”, 2013 (Diana L Miglioretti , Eric Johnson, Andrew Williams, Robert T Greenlee)
Избыток радиации может стать спусковым механизмом для онкологии, дегенеративных нейрозаболеваний (болезнь Альцгеймера, болезнь Паркинсона). Беременным женщинам (даже если факт беременности еще не подтвержден, но существует вероятность вынашивания плода на данный момент) противопоказано дополнительное радиационное воздействие, то есть делать КТ в этот период можно только по жизненным показаниям, из-за риска тератогенного воздействия ионизирующего излучения на формирующийся плод.
Большинство медиков сегодня склоняются к мнению, что польза целесообразной компьютерной томографии несомненно превышает вред, однако уровень лучевого воздействия на организм, даже с целью медицинской диагностики, следует сводить к минимуму. Например, для наблюдения изменений легочных лимфоузлов или камней в почках диагностические изображения могут быть получены при дозе на 50-75 % ниже, чем при использовании стандартных протоколов. То есть в некоторых случаях могут быть применены низкодозные КТ-протоколы.
Старые методики замеров до 1990 года
Существенным отличием от МЭД, основой «чернобыльских» нормативов, была экспозиционная доза, считавшая поток фотонов, ионизирующих воздух. Физиками этот процесс отлично исчисляется, однако данные сведения не могли точно покрыть требования по медицинским анализам.
В формуле дозу рассчитывали в качестве электрозаряда ионов, которые образуются тормозящим излучением в сухом воздухе при делении на массу объема воздуха. В физических величинах это ампер в секунду, т. е. обоснование количества энергии, поглощенной объектом под потоком радиации.
В качестве же хрестоматийной системной единицы используется рентген в секунду. Рентген — устаревшая мера излучения, в наше время используют зиверты. Причина, почему именно с 1990 года совершена реформа — выход новых комплексных методичек по дозиметрам. Тем самым полностью обновлен модельный ряд детекторов и внедрены более современные стандарты радиобезопасности. На основе кумулятивного опыта радиационных аварий были установлены фундаментальные изъяны использования рентгенов в час в качестве единиц измерения:
- Слишком грубые замеры. «Формально» ионизирующий поток по формуле просчитан корректно. Однако недостаточно раскрыты второстепенные физические явления, показывающие изменения в итоговых масштабах облучения.
- Нет соотношения с воздействием в биологическом плане: экспозиционная доза в разных условиях плотности ионизации имеет весьма вариативные последствия.
- Старым методом было нереально проверить накопленное облучение за определенный период, также упускались многие биологические параметры.
Расчет эффективной дозы
График, показывающий соотношение величин защитной дозы в единицах СИ
Ионизирующее излучение выделяет энергию в облучаемое вещество. Величина, используемая для выражения этого, — это поглощенная доза , величина физической дозы, которая зависит от уровня падающего излучения и свойств поглощения облучаемого объекта. Поглощенная доза — это физическая величина, которая не является удовлетворительным показателем биологического эффекта, поэтому, чтобы учесть стохастический радиологический риск, Международная комиссия по радиационным единицам и измерениям (ICRU) и МКРЗ для расчета биологического эффекта поглощенной дозы.
Для получения эффективной дозы рассчитанная доза, поглощенная органом, D T сначала корректируется с учетом типа излучения с использованием фактора W R, чтобы получить средневзвешенное значение эквивалентной дозы H T, полученной в облучаемых тканях тела, а затем результат корректируется с учетом ткани или органы , облучаемые использование коэффициента W T , чтобы произвести эффективное количество дозы Е .
Сумма эффективных доз для всех органов и тканей тела представляет собой эффективную дозу для всего тела. Если облучается только часть тела, то для расчета эффективной дозы используются только эти области. Весовые коэффициенты ткани в сумме составляют 1,0, так что, если все тело облучается равномерно проникающим внешним излучением, эффективная доза для всего тела равна эквивалентной дозе для всего тела.
Использование весового коэффициента ткани W T
Весовые коэффициенты ICRP для ткани приведены в прилагаемой таблице, а также приведены уравнения, используемые для расчета либо из поглощенной, либо из эквивалентной дозы.
Некоторые ткани, такие как костный мозг, особенно чувствительны к радиации, поэтому им присваивается весовой коэффициент, который непропорционально велик по сравнению с той долей массы тела, которую они представляют. Другие ткани, такие как твердая поверхность кости, особенно нечувствительны к излучению, и им присваивается непропорционально низкий весовой коэффициент.
Органы | Весовые коэффициенты тканей | ||
---|---|---|---|
ICRP26 1977 г. | ICRP60 1990 | ICRP103 2007 | |
Гонады | 0,25 | 0,20 | 0,08 |
Красный костный мозг | 0,12 | 0,12 | 0,12 |
Двоеточие | — | 0,12 | 0,12 |
Легкое | 0,12 | 0,12 | 0,12 |
Желудок | — | 0,12 | 0,12 |
Грудь | 0,15 | 0,05 | 0,12 |
Мочевой пузырь | — | 0,05 | 0,04 |
Печень | — | 0,05 | 0,04 |
Пищевод | — | 0,05 | 0,04 |
Щитовидная железа | 0,03 | 0,05 | 0,04 |
Кожа | — | 0,01 | 0,01 |
Костная поверхность | 0,03 | 0,01 | 0,01 |
Слюнные железы | — | — | 0,01 |
Головной мозг | — | — | 0,01 |
Остаток тела | 0,30 | 0,05 | 0,12 |
Общий | 1,00 | 1,00 | 1,00 |
В расчете на эквивалентную дозу:
- Eзнак равно∑ТWТ⋅ЧАСТзнак равно∑ТWТ∑рWр⋅D¯Т,р{\ displaystyle E = \ sum _ {T} W_ {T} \ cdot H_ {T} = \ sum _ {T} W_ {T} \ sum _ {R} W_ {R} \ cdot {\ bar {D} } _ {T, R}}.
В расчете на поглощенную дозу:
- Eзнак равно∑ТWТ∑рWр⋅∫ТDр(Икс,у,z)ρ(Икс,у,z)dV∫Тρ(Икс,у,z)dV{\ Displaystyle E = \ sum _ {T} W_ {T} \ sum _ {R} W_ {R} \ cdot {\ frac {\ int _ {T} D_ {R} (x, y, z) \ rho (x, y, z) dV} {\ int _ {T} \ rho (x, y, z) dV}}}
Где
- E{\ displaystyle E} эффективная доза для всего организма
- ЧАСТ{\ displaystyle H_ {T}}эквивалентная доза, поглощенная тканью T
- WТ{\ displaystyle W_ {T}} — весовой коэффициент ткани, определяемый регламентом
- Wр{\ Displaystyle W_ {R}} — весовой коэффициент излучения, определенный нормативными актами.
- D¯Т,р{\ displaystyle {\ bar {D}} _ {T, R}}- усредненная по массе поглощенная доза в ткани T от излучения типа R
- Dр(Икс,у,z){\ Displaystyle D_ {R} (х, у, г)}поглощенная доза от излучения типа R как функция местоположения
- ρ(Икс,у,z){\ Displaystyle \ rho (х, у, г)} плотность как функция местоположения
- V{\ displaystyle V} объем
- Т{\ displaystyle T} интересующая ткань или орган
Весовые коэффициенты ICRP для тканей выбираются так, чтобы представить долю риска для здоровья или биологического эффекта, который относится к конкретной названной ткани. Эти весовые коэффициенты пересматривались дважды, как показано на диаграмме выше.
Комиссия по ядерному регулированию Соединенных Штатов по- прежнему использует в своих правилах весовые коэффициенты МКРЗ 1977 года, несмотря на более поздние пересмотренные рекомендации МКРЗ.
Какова допустимая доза облучения при медицинских исследованиях?
Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?
Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.
-
Опасная доза облучения
Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.
Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.
Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.
-
Есть ли польза от радиации?
Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.
Как радиоактивное ионизирующее излучение воздействует на организм человека?
Радиоактивное излучение запускает механизм выработки свободных радикалов. Их избыток при низком антиоксидантом (защитном) статусе организма приводит к разрушению клеточных компонентов, в том числе к деструкции и сокращению теломеров — концевых участков молекул ДНК. Также процессу окисления подвержены липиды и белки мембран.
В норме организм человека легко переносит диагностические мероприятия и самостоятельно восстанавливается — дополнительно ничего предпринимать не нужно. Вслед за окислительными процессами, вызванными свободными радикалами, начинается восстановление, и ресурсов организма для этого достаточно.
В конце ХХ — начале XXI века был открыт фермент теломеразы (активен в половых, стволовых и онкологических клетках). За его открытие Э. Блэк-Бёрн, К. Грейдер и Дж. Шостак были удостоены Нобелевской премии в 2009 году. Теломераза отвечает за «удлинение» теломеров, это значит что их разрушение нельзя считать необратимым. Однако ученые заметили и другую закономерность: рак и рост онкологической опухоли возможен тогда, когда молекулы ДНК существенно укорочены и повреждены, при этом фермент теломеразы пребывает в активном состоянии. Это своеобразный «сбой» генетической программы, который приводит к опасным последствиям.
В целом, среднестатистический здоровый организм взрослого человека в состоянии восстановиться после облучения, равного 50-100 мЗв в год. При большем систематическом воздействии радиации развивается лучевая болезнь.
Учет доз облучения
По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.
На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».
Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.
Рекомендации
- ^ Публикация МКРЗ, 103 п. 103
- Публикация 103 МКРЗ, глоссарий
- Публикация 103 МКРЗ, параграфы 104 и 105
- Публикация 103 МКРЗ
- Отчет МКРЗ 103, параграфы 104 и 105
- ^ Журнал радиологической защиты Том 35 № 3 2015. «Некролог — Вольфганг Якоби 1928 — 2015.»
- Краткое содержание публикации 103 МКРЗ, параграф 101
- Краткое содержание публикации 103 МКРЗ, параграф j
- Публикация 103 МКРЗ, параграф 101
- Публикация 103 МКРЗ, параграф 22 и глоссарий
- Публикация 103 МКРЗ — Глоссарий.
- . Летопись МКРЗ. Публикация МКРЗ 60. 21 (1–3). 1991. ISBN 978-0-08-041144-6. Получено 17 мая 2012.
- ^ Если иное не указано в полях, ссылка:-
- Правила Великобритании об ионизирующих излучениях 1999 г.
- Якоби В. (1975). «Понятие эффективной дозы — предложение по комбинации органных доз». Radiat. Environ. Биофиз. (12): 101–109.
- Публикация 103 МКРЗ, параграф 101
- «Использование эффективной дозы», Джон Харрисон. 3-й Международный симпозиум по системе радиологической защиты, октябрь 2015 г., Сеул.
Как уменьшить вред воздействия ионизирующего облучения?
Если пациенту показана КТ, и никакое другое обследование (МРТ, УЗИ) не может заменить этот метод, то:
Перед процедурой и во время нее:
1.Уточните, на каком КТ аппарате проводится обследование. Предпочтение следует отдать мультиспиральным томографам нового образца (32 среза и более).
2.Уточните, сколько будет длиться сканирование. Чем меньше оно длится, тем лучше. Современным КТ-аппаратам достаточно менее 1 минуты, чтобы сделать серию сканов.
3.Заранее уточните, какая лучевая нагрузка в мЗв будет получена при вашем исследовании (в среднем).
4.Не нарушайте технику проведения процедуры и внимательно слушайте рентген-лаборанта. В противном случае исследование нужно будет повторить.
После КТ
Если лучевая нагрузка была высокой, уменьшить вред можно следующими способами:
1.Усильте естественную защиту организма. Это можно сделать, добавив в рацион продукты, обогащенные антиоксидантами: свеклу, чернику, виноград, брокколи, гречку, чернослив, красный перец. Витамины А, Е, С препятствуют клеточным повреждениям.
2.Не пренебрегайте физическими нагрузками. Полезна даже ежедневная ходьба (3-5 км).
3.Не подвергайте свой организм психологическому стрессу и высыпайтесь.
Обзор
Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.
Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.
Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:
- костный мозг, где происходит образование клеток иммунитета и крови,
- кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
- ткани плода у беременной женщины.
Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.
Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине
Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач
Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?
Текст подготовил
Котов Максим Анатольевич, главный врач центра КТ «Ами», кандидат медицинских наук, доцент. Стаж 19 лет
Список источников
- Campbell B., De Silva D., Macleod M., Coutts S., Schwamm L., Davis S., Donnan G. Ischaemic stroke, 2019.
- Bouchez L., Sztajzel R., Vargas M. CT imaging selection in acute stroke, 2016.
- Kamalian S., Lev M., Stroke Imaging, 2019.
- Котов М.А. Возможности компьютерной томографии в прогнозировании летального исхода инсульта / Дневник казанской медицинской школы. — 2017. — №. 2. — С. 76-80.
- Котов М.А. Показатели и значение интракраниального анатомического резерва, у пациентов с острым нарушением мозгового кровообращения / Журнал научных статей Здоровье и образование в XXI веке.Т. 18, № 2., 2016. — С. 229-233.
- Котов М.А. Лучевые предикторы исходов ишемического инсульта / Дневник казанской медицинской школы. – 2018. – №. 2. – С. 86-89.
- Котов М.А. Предикторы раннего летального исхода острого нарушения мозгового кровообращения, выявляемые при компьютерной томографии / Материалы VIII Научно-практической конференции Поленовские чтения, Российский нейрохирургический журнал им. проф. А.Л. Поленова, специальный выпуск. — 2018, -Т.Х, С. 129.
- Котов М.А. Возможности компьютерной томографии в оценке риска развития острого нарушения мозгового кровообращения / Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2017. Т. 9. № 4. — С. 35-38.
- Kotov M.A. Brain dislocation morphometry at neurology and neurosurgery from the standpoint of evidence-based medicine / Global Science and Innovation // Materials of the V international scientific conference. — Chicago, 2015. – Р. 207-212.
Особенности лучей
Гамма-излучения является наиболее опасным по сравнению с бета, альфа-частицами, поэтому нужна прочная и надежная защита. Гамма-излучение имеет особые источники – космические лучи, распад ядерных атомов, а также их взаимодействие. Частота гамма-излучения больше 3·1018 Гц.
Гамма-излучение приходит из глубин космоса, рождается на земле, поэтому оказывает опасное ионизирующее влияние на человеческий организм. Что касается дозы гамма-излучения, то она зависит от многих факторов.
Не стоит забывать об особой закономерности, которая гласит, чем меньше длина волны гамма излучения, тем выше энергия у дозы, эквивалента. Именно поэтому можно смело говорить, что гамма-излучение – это некий поток квантовый, обладающий очень большой энергией.
Гамма-излучение имеет разрушающее воздействие, заключающееся в следующем:
- За счет высокой проникающей способности, единицы облучения с легкостью проникают в клетки и живые организмы, провоцируя поражение, сильное отравление.
- В процессе движения поток частиц оставляет поврежденные ионы, молекулы, которые начинают ионизировать новые дозы молекул.
- Подобная клеточная трансформация становится причиной огромных изменений в структуре. Что касается разрушенных, изменившихся частей клеток, получивших дозы облучения, начинается отравление за счет яда.
- Завершающий этап – рождение новых, дефектных клеток, неспособных выполнять собственные функции, так как мощность поражения слишком велика.
Гамма-излучение несет особую опасность, которая усугубляется тем, что человек неспособен самостоятельно почувствовать всю мощность воздействия радиоактивной волны. Подобное явление происходит вплоть до смертельной дозы.
Каждый человеческий орган имеет определенную чувствительность к влиянию радиационной волны, которую дает гамма-излучение. Особая уязвимость наблюдается у делящихся кровеносных клеток, лимфатических желез и ЖКТ, ДНК и фолликул волосяных. Поток гамма частиц способен разрушить слаженность всех процессов, которые действуют в живом организме. Гамма-излучение приводит к серьезной мутации, которая затрагивает генетический механизм
Важно знать, что гамма-излучение, любой дозы, может скапливаться, а затем начать действовать.