Что будет, если попасть в черную дыру
Содержание:
- Черная дыра в космосе
- Где сингулярность?
- Поиск черной дыры
- Что находится за горизонтом событий?
- От идеи до фото черной дыры
- Что предлагает Хокинг для решения информационного парадокса черной дыры?
- Кольцо огня с черным центром
- Что такое ЧЁРНАЯ дыра простыми словами. Что такое чёрная дыра в космосе простым языком
- Как обнаружить черную дыру
- Состояние внутри и снаружи дыры
- Что будет, если попасть в черную дыру
- Падение в черную дыру
Черная дыра в космосе
Все выше обозначенные свойства черных дыр — истинные. Но мы привыкли жить с абсолютно фантастической идеей: черные дыры засасывают окружающую материю. Это совершенно не так и искажает принципы работы гравитации. Самый большой миф на тему черных дыр заключается в том, что они засасывают. Мы расскажем вам научную правду.
Как в принципе, так и на практике существует много разных способов образования черной дыры. Можно взять большую, массивную звезду и превратить ее в сверхновую, так чтобы центральное ядро провалилось в себя и сформировало черную дыру. Можно взять за основу слияние двух нейтронных звезд, когда они приводят к образованию черной дыры при пересечении определенного порога массы. Можно было бы собрать кучу вещества — сверхмассивную звезду или огромное облако сжиженного газа — и заставить его свернуться в черную дыру.
При наличии достаточной массы в достаточно концентрированном объеме пространства, вокруг нее сформируется горизонт событий. За его пределы можно сбежать, если двигаться прочь от черной дыры на скорости света. Но если вы окажетесь в за горизонтом событий, то даже движение со скорость света будет неизбежно прокладывать путь в центральную сингулярностью. Из горизонта событий черной дыры сбежать нет никакой возможности.
Иллюстрация черной дыры.
Однако для объектов за пределами черной дыры все не так просто. Поскольку черные дыры являются такими массивными объектами, когда вы приближаетесь к одной из них, вы начинаете испытывать значительные приливные силы. Возможно, вы знакомы с приливными силами Луны и как они влияют на Землю.
Если усреднить, можно рассматривать Луну как точечную массу и Землю как точечную массу, разделенные относительно большим расстоянием в 380 000 километров или около того. Но в реальности Земля это не точка, а объект, занимающий конкретный реальный объем. Одни части Земли будут ближе к Луне, чем другие. Более близкие части будут испытывать больше гравитационное притяжение в среднем; более удаленные будут испытывать меньшее притяжение в среднем.
Однако есть нечто большее, чем просто тот факт, что часть Земли находится ближе, а часть дальше от Луны. Как и все физические объекты, Земля является трехмерной, что означает, что «верхняя» и «нижняя» области Земли (с точки зрения Луны) будут притягиваться внутрь, к центру Земли, относительно частей, расположенных в середине.
Распределение сил притяжения спутника.
В общем, если вычесть среднюю силу, которая ощущается в каждой точке на Земле, мы сможем увидеть, как разные точки на поверхности по-разному ощущают внешние силы от Луны. Эти силовые линии отображают относительные силы, которые испытывает объект, и объясняют, почему объекты, испытывающие приливы, растягиваются по направлению силы и сжимаются перпендикулярно этому направлению.
Чем ближе вы к массивному объекту, тем больше становятся эти приливные силы. Они нарастают даже быстрее, чем гравитационная сила. Поскольку черные дыры чрезвычайно массивны и компактны, они генерируют самые большие приливные силы во Вселенной. Вот почему, когда вы приближаетесь к черной дыре, вы «спагеттифицируетесь», или растягиваетесь в тонкую, лапшевидную форму.
Понятно теперь, почему вы ожидаете, что черная дыра засосет вас: чем ближе вы, тем сильнее становится сила притяжения и тем сильнее становятся приливные силы, разрывающие вас на части.
Где сингулярность?
Изнутри горизонта событий черной дыры, в каком направлении вы бы ни двигались, вы в конечном итоге сталкиваетесь с самой сингулярностью. Поэтому, как ни странно, сингулярность появляется во всех направлениях. Если ваши ноги указывают в направлении ускорения, вы увидите их перед собой, но также и над собой. Все это легко просчитывается, хоть и чрезвычайно нелогично. И это только для упрощенного случая: невращающейся черной дыры.
А теперь давайте перейдем к физически интересному случаю: когда черная дыра вращается. Черные дыры обязаны своим происхождением системам из вещества — вроде звезд — которые всегда вращаются на каком-то уровне. В нашей Вселенной (и в общей теории относительности) угловой момент представляет собой абсолютную заключенную величину для любой закрытой системы; нет никакого способа от него избавиться. Когда совокупность вещества коллапсирует до радиуса, который меньше радиуса горизонта событий, угловой момент оказывается заключенным внутри него, как и масса.
Сингулярность и горизонт событий.
Решение, которое мы имеем здесь, будет намного сложнее. Эйнштейн представил общую теорию относительности в 1915 году, а Карл Шварцшильд получил решение по невращающейся черной дыре пару месяцев спустя, в начале 1916 года. Но следующий шаг в моделировании этой проблемы более реалистичным способом — когда черная дыра обладает угловым моментов, а не только массой — был предпринят только в 1963 году, когда Рой Керр нашел точное решение в 1963 году.
Существует несколько фундаментальных и важных различий между более наивным и простым решением Шварцшильда и более реалистичным и сложным решением Керра. Среди них:
- Вместо единого решения о том, где находится горизонт событий, у вращающейся черной дыры есть два математических решения: внутренний и внешний горизонт событий.
- За пределами даже внешнего горизонта событий существует место, известное как эргосфера, в котором само пространства перемещается со скоростью вращения, равной скорости света, и частицы в нем испытывают огромные ускорения.
- Существует максимальное допустимое отношение углового момента к массе; если импульс будет слишком сильным, черная дыра будет излучать эту энергию (посредством гравитационного излучения), пока он не упадет до предела.
- И самое интересное: сингулярность в центре черной дыры — это уже не точка, а одномерное кольцо, радиус которого определяется массой и угловым моментом черной дыры.
Учитывая все это, что произойдет, когда вы попадете в черную дыру? Да то же самое, что произойдет, если вы попадете в невращающуюся черную дыру, за исключением того, что все пространство не ведет себя так, будто падает в направлении центральной сингулярность. Вместо этого, пространство также ведет себя так, будто перемещается вдоль направления вращения, как закручивающаяся воронка. Чем больше отношение углового момента к массе, тем быстрее она вращается.
Поиск черной дыры
Проект BlackHoleCam — это европейский проект окончательного изображения, измерения и понимания астрофизических черных дыр. Европейский проект является частью глобальной коллаборации — консорциума Event Horizon Telescope, в который входит больше 200 ученых из Европы, Америк, Азии и Африки. Вместе они хотят сделать первый снимок черной дыры.
В апреле 2017 года они наблюдали галактический центр и M87 при помощи восьми телескопах на шести различных горах в Испании, Аризоне, Гавайях, Мексике, Чили и Южном полюсе.
Все телескопы были оснащены точными атомными часами для точной синхронизации их данных. Ученые записали несколько петабайт сырых данных, благодаря удивительно хорошим погодным условиям по всему миру в то время.
Что находится за горизонтом событий?
Согласно нашей теории гравитации — общей теории относительности Эйнштейна — свойства черной дыры определяются тремя вещами. А именно:
- Масса, или общее количество вещества и эквивалентное количество энергии (по формуле E = mc2), которые идут на формирование и рост черной дыры до ее текущего состояния.
- Заряд, или общий электрический заряд, который существует в черной дыре от всех положительно и отрицательно заряженных объектов, которые попали в черную дыру за всю историю ее жизни.
- Угловой импульс (момент), или спин, который является мерой общего количества вращательного движения, которое черная дыра имеет по своей природе.
В реальности, все черные дыры, которые физически существуют в нашей Вселенной, должны иметь большие массы, значительное количество угловых моментов и незначительные заряды. Это чрезвычайно усложняет ситуацию.
Искажения в черной дыре могут выглядеть так.
Когда мы обычно представляем черную дыру, мы воображаем простой ее вариант, который описывается только ее массой. У него есть горизонт событий, окружающий одну точку, и область, окружающая эту точку, за пределы которой свет не может выйти. Эта область совершенно сферическая и имеет границу, разделяющую области, из которой свет может вырваться и из которой не может: горизонт событий. Горизонт событий находится на определенном расстоянии (радиус Шварцшильда) от сингулярности во всех направлениях одновременно.
Это упрощенная версия реалистичной черной дыры, но прекрасное место, с которого можно начать размышлять о физике, происходящей в двух разных местах: за горизонтом событий и внутри горизонта событий.
За пределами горизонта событий гравитация ведет себя так, как вы обычно ожидаете. Пространство искривляется в присутствии массы, что заставляет каждый объект во Вселенной испытывать ускорение в направлении центральной сингулярности. Если бы вы оказались на большом расстоянии от черной дыры в состоянии покоя и позволили предмету упасть в нее, что бы вы увидели?
Если предположить, что вам удалось сохранить неподвижность, вы увидите, как падающий объект медленно ускоряется от вас к этой черной дыре. Он ускорится к горизонту событий, после чего произойдет нечто странное. Вам покажется, что он замедляется, затухает и становится краснее. Но он не исчезнет полностью. Он лишь приблизится к этому: станет тусклым, красным и сложнее обнаружимым. Вы всегда сможете его увидеть, если будете смотреть достаточно пристально.
Теперь вообразим тот же сценарий, но в этот раз представим, что вы и есть тот самый падающий в черную дыру объект. Опыт происходящего будет совершенно другим.
Горизонт событий будет становится больше гораздо быстрее, чем вы ожидали, поскольку искривление пространства будет становится сильнее. Вокруг горизонта событий пространство настолько искривлено, что вы увидите множество изображений вселенной, которая находится извне, словно ее отразили и перевернули.
Схема черной дыры.
И как только вы пересечете горизонт событий, вы не только все еще сможете видеть внешнюю вселенной, но и часть вселенной внутри горизонта событий. В последние моменты пространство будет выглядеть совершенно плоским.
От идеи до фото черной дыры
Размышлять о самых таинственных объектах во Вселенной Хокинг начал в 1970-х годах. Представляя мощнейшую гравитацию черных дыр, окруженную горизонтом событий – невидимым пузырем, отмечающим границу невозврата – он понял, что теория Эйнштейна также означала, что горизонт событий черной дыры не может уменьшиться. Черная дыра только набирает массу, поэтому общая площадь поверхности ее горизонта событий только растет.
Это была невероятно смелая идея. Но Хокинг пошел еще дальше и предположил, что черные дыры могут не только «разделяться надвое», но и исчезать, словно мыльные пузыри. В 1973 году, в соавторстве с Джеймсом Бардином (сегодня сотрудник Вашингтонского университета) и Брэндоном Картером (научный сотрудник в Французского национального центра научных исследований), Стивен Хокинг изложил свои идеи.
Британский физик-теоретик Стивен Хокинг. Фото: The New York Times
В работе, в частности, содержалось несколько тревожных звоночков для физики, в том числе «Теорема об отсутствии волос», согласно которой площадь поверхности горизонта событий – это мера всей информации, поглощаемой черной дырой. Иными словами, черной дыре все равно, потребляет она материю или антивещество. Эти объекты обладают всего тремя свойствами: массой, спином и электрическим зарядом. Никакие другие детали или «волосы» не регистрируются.
Вернемся к идеям Хокинга. Для начала вспомним знаменитое уравнение Эйнштейна E равно MC в квадрате – энергия равна массе, умноженной на скорость света в квадрате. Энергия и масса – это одно и то же. Они равноценны. Выходит, можно превратить массу в энергию и энергию в массу.
До 2015 года черные дыры являлись гипотетическими объектами.
Вокруг черной дыры, как известно, очень горячий газ и экстремально высокие температуры, сильные магнитные поля, и, возможно, много энергии. И эта энергия может проявляться в виде частиц, массы. А еще энергия всегда создает пары частица/античастица.
Итак, если то же самое происходит вблизи черной дыры, вполне возможно, что одна из этих маленьких частиц попадет в черную дыру, а другая вырывается наружу. Сегодня исследователи считают, что выход частиц наружу возможен благодаря действию самой гравитации — обычной гравитации с одним слоем квантовых эффектов. Между тем, в 1974 году Стивен Хокинг вычислил, что квантовые эффекты приведут к медленной утечке информации и взрыву черной дыры.
Что предлагает Хокинг для решения информационного парадокса черной дыры?
Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.
На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.
Давайте обсудим Черные Дыры в нашем Telegram-канале?
Кольцо огня с черным центром
И все же, в самом центре горизонт событий улавливает, как хищная птица, каждый фотон, который подходит слишком близко.
Поскольку пространство искривлено огромной массой черной дыры, дорожки света также искривляются и даже образуют почти концентрические круги вокруг черной дыры, подобно серпантинам вокруг глубокой долины. Этот эффект кольца света был рассчитан уже в 1916 году известным математиком Дэвидом Гильбертом всего через несколько месяцев после того, как Альберт Эйнштейн завершил свою общую теорию относительности.
После многократного обхода черной дыры, некоторые из лучей света могут сбежать, а другие окажутся в горизонте событий. На этом замысловатом пути света вы буквально можете заглянуть в черную дыру. И «ничто», которое предстанет вашему взгляду, будет горизонтом событий.
Если бы вы сделали снимок черной дыры, вы бы увидели черную тень в окружении светящегося тумана света. Мы назвали эту особенность тенью черной дыры.
Что примечательно, эта тень кажется больше, чем можно было бы ожидать, если взять за исходную точку диаметр горизонта событий. Причина в том, что черная дыра действует как гигантская линза, усиливая себя.
Окружение тени будет представлено крошечным «фотонным кольцом» из-за света, который кружит вокруг черной дыры почти вечно. Кроме того, вы увидите больше колец света, возникающих вблизи горизонта событий, однако концентрирующихся вокруг тени черной дыры из-за эффекта линзирования.
Что такое ЧЁРНАЯ дыра простыми словами. Что такое чёрная дыра в космосе простым языком
Черная дыра является одним из самых загадочных явлений во Вселенной. Найти её взглядом крайне сложно, так как данная область не выделяет никакого света, поэтому является практически невидимой.
Черная дыра является чем-то вроде трещины в космосе. Она изгибает пространство своей мощной гравитацией таким образом, что появляется дыра, из которой ничто не может убежать, как только попадает в нее. Даже лучи света не могут сопротивляться.
Активные черные дыры поглощают вещество из окружающей среды и становятся еще тяжелее. Их сфера влияния увеличивается, и они могут получить новую материю.
Но есть также «спящие» черные дыры, которые существуют, но не могут добраться до материи. Когда что-то случается с ними, они снова просыпаются.
Черные дыры являются важным строительным блоком Вселенной. Без них она выглядела бы совершенно иначе. Предположительно, галактик вообще не было бы. В настоящее время изучается влияние черных дыр на их образование.
Дыра настолько черная, что она не излучает свет. Проходящие световые лучи отталкиваются от её первоначальной орбиты огромной гравитацией. В зависимости от того, насколько близок луч света к черной дыре, он оказывает на неё очень разные эффекты.
Как найти черную дыру
При данном явлении наблюдается изгиб световых лучей. Если между нами и далекой галактикой есть черная дыра, мы думаем, что свет галактики будет согнут, потому что он должен пройти через гравитационное поле черной дыры.
Отклонение лучей называется гравитационным линзированием. Этот эффект также возникает, когда большие массовые коллекции, такие как галактики или кластеры галактик, находятся на пути и изгибают свет от базовых объектов.
Неожиданно галактика может появиться несколько раз, а её клоны образуют кольцо вокруг черной дыры. Такие кольца выделяются, когда, например, космический телескоп Хаббла фотографирует звездные поля. Сама черная дыра не видна, но кольца указывают на нее.
Однако, изображение галактики или звезды скользит, поэтому оно находится не в своём точном месте нахождения.
Световые лучи, исходящие от далекой звезды, пересекают гравитационное поле черной дыры и отклоняются от исходной орбиты.
Таким образом, наблюдатель на Земле не видит эту звезду там, где она на самом деле находится. Вместо этого звезда немного смещена, а иногда в два раза или больше!
Если черная дыра когда-то принадлежала двойной звездной системе, которая превратила звезду в черную дыру, вы можете увидеть, как она постоянно истощает материю от оставшейся звезды.
При этом вокруг черной дыры образуется аккреционный диск, в котором «украденное» вещество вращается вокруг области и постепенно попадает в неё.
Как развиваются черные дыры, и какие типы существуют
Вспышка сверхновой
Массивная звезда в конце своей жизни взрывается в сверхновую и отталкивает ее внешние слои. Остальная часть звезды разрушается и сжимается в самых маленьких пространствах. Там создается черная дыра, которая больше не позволяет свету убегать.
Если бы это случилось с нашим Солнцем, у него просто был бы диаметр 3 км!
Для того чтобы вспышка сверхновой произошла, звезда должна весить не менее восьми солнечных масс. После опускания её внешних слоев впечатляющим образом остается черная дыра, в которой масса бывшей звезды концентрируется в крошечном пространстве.
Черные дыры, вероятно, могут возникнуть, когда две звезды сталкиваются и объединяют свои массы. Если масса превышает определенное значение, эта новая звезда рушится до черной дыры.
Галактика Сомбреро
Существуют сверхмассивные черные дыры, которые в миллион или даже в миллиард раз больше массы нашего Солнца. Они находятся в центре большинства галактик.
Как они появились, до сих пор неясно, и сейчас их изучают. Может быть, когда черные дыры слились вместе. Или они пожирают столько материи из своей среды в ходе существования, что могут стать чрезвычайно тяжелыми. Считается, что прийти к образованию большой галактики можно благодаря наличию черной дыры.
Есть ли крошечные черные дыры во Вселенной, трудно ответить, потому что за невозможно проследить. Но кто знает, может быть, кто-то живет в стиральной машине и проглатывает некоторые вещи оттуда?
Изначальные черные дыры в настоящее время остаются чистой теорией. Возможно, они сформировались вскоре после Большого взрыва, когда материя все еще была переполнена в ограниченном пространстве. В некоторых местах она была, вероятно, настолько плотной, что смогла создать черную дыру.
Как обнаружить черную дыру
В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра.
Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили. Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они.
Визуализация черной дыры
(Фото: NASA)
Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить.
Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть. С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры.
Визуализация черной дыры рядом со звездой
(Фото: NASA)
В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник». Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр.
Визуализация квазара
(Фото: NASA)
Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания. В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность. Понять это легко, достаточно представить острый предмет. Это предмет с очень маленькой площадью. Если просто ткнуть куда-то пальцем, нельзя проткнуть поверхность, а если с такой же силой надавить на иголку, то проткнется палец, которым на нее давят. Так вот маленькие объекты при той же массе сильнее искривляют пространство-время вокруг себя. Такой эффект называется гравитационным линзированием.
Индустрия 4.0
Как полететь на Луну: самые популярные поисковые запросы на тему космоса
Ученые наблюдают за звездой и вдруг замечают, что ее блеск растет, а потом совершенно симметрично спадает обратно. Со звездой ничего не произошло, но между нами и звездой пролетел массивный объект. И этот массивный объект, искажая пространство-время, собрал световые лучи.
Визуализация черной дыры
(Фото: NASA)
Поэтому кажется, будто возрастает светимость звезды, а на самом деле просто больше ее света было собрано и попало к нам. Звезда с массой десять масс Солнца светила бы очень заметно, ученые бы ее не пропустили. А в таких наблюдениях появляется абсолютно темный объект с массой примерно десять солнечных. Что это может быть? Только черная дыра.
Если есть пара черных дыр, то, сливаясь, они будут порождать гравитационно-волновой всплеск. И в 2015 году впервые были обнаружены такие всплески гравитационного излучения. Это последний на сегодняшний день хороший способ поиска черных дыр.
Визуализация двух черных дыр
(Фото: NASA)
Состояние внутри и снаружи дыры
Содержание внутреннего пространства зависит от вида коллапсара. Черные дыры разделяют на сферические и сфероидальные. Первые практически не вращаются, а другие наоборот имеют внутреннее крутящиеся движение. Скорость колебаний внутри различается, начинаясь от мелких оборотов и заканчиваясь сверхбыстрыми порывами.
О состоянии поглощения энергии можно сказать, что она:
- Безразмерная;
- Бесконечная;
- Сингулярная;
- Неосязаемая;
- Бесцветная;
- Движущаяся.
Энергия черной дыры не подчиняется законам физики. Внутри нее постоянно происходит искривление пространства и времени. Вещи в черной дыре не существуют в своем физическом смысле. Достаточно сложно объяснить нематериальность и бесконечность, т.к. для современной квантовой физики это понятия неисчисляемые. Поэтому всякий раз, ученые допускают ошибки в математических вычислениях темной энергии, оперируя только известными понятиями.
Общая теория относительности утверждает, что внутри происходит бесконечная кривизна пространства. При этом сами дыры тоже проявляют активность, быстро или медленно втягивая объекты. В нашей галактике она находится в центре и называется Стрелец А. Ее пытались сфотографировать, но не смогли. Тело имеет небольшой горизонт событий, поэтому взрывные процессы происходят в течение одного земного часа. Для длительного фокуса фототехники − это невозможная задача.
Что будет, если попасть в черную дыру
Что же произойдет, когда вы приблизитесь и в конце концов попадете в черную дыру?
С большого расстояния геометрия увиденного вами будет соответствовать вашим ожиданиям и расчетам. Но по мере продвижения в вашем идеально сконструированном и неразрушимом космическом аппарате, вы начнете замечать нечто странное, подходя к черной дыре. Если разделить расстояние между вами и звездой надвое, угловой размер звезды будет казаться вдвое больше. Если вы сократите расстояние до четверти, он будет в четыре раза больше. Но черные дыры другие.
Математическая модель
В отличие от всех других объектов, к которым вы привыкли, которые чем ближе, тем крупнее кажутся, черная дыра растет в размерах гораздо быстрее, благодаря невероятной кривизне пространства.
С нашей точки зрения на Земле, черная дыра в галактическом центре будет казаться крошечной, ее радиус будет измеряться в микродуговых секундах. Но по сравнению с наивным радиусом, который вы рассчитываете в рамках ОТО, он будет казаться на 150% больше из-за искривления пространства. Если вы приблизитесь к нему, к моменту, когда горизонт событий будет размером с полную Луну на небе, он будет в четыре раза больше этого. Причина, конечно, в том, что пространство-время искривляется все сильнее и сильнее, когда вы приближаетесь к черной дыре.
И наоборот, наблюдаемая площадь черной дыры растет все больше и больше; к моменту, когда вы будете в нескольких шварцшильдовских радиусах от нее, черная дыра вырастет до таких размеров, что заслонит собой практически весь передний обзор корабля. Обычные геометрические объекты так себя не ведут.
Когда вы будете приближаться к самой внутренней стабильной круговой орбите — которая составляет 150% радиуса горизонта событий — вы заметите, что передний обзор на вашем корабле станет абсолютно черным. Как только вы пересечете эту точно, даже позади вас все начнет погружаться в темноту. Опять же, это связано с тем, как пути света из разных точек движутся в этом сильно искривленном пространстве-времени.
В этот момент, если вы не пересекли горизонт событий, вы все еще можете выйти. Если вы приложите достаточное ускорение прочь от горизонта событий, вы сможете покинуть его гравитацию и вернуться в безопасное пространство-время подальше от черной дыры. Ваши гравитационные датчики подскажут вам, где нисходящий градиент в направлении центра сменяется плоскостью, где можно увидеть звездный свет.
Падение в черную дыру
Что же произойдет, если вы случайно упадете в одну из этих космических аберраций? Сначала спросим вашего космического напарника — назовем ее Анна — которая с ужасом смотрит, как вы плывете по направлению к черной дыре, в то время как она остается на безопасном расстоянии. Она наблюдает странные вещи.
Если вы ускоряетесь по направлению к горизонту событий, Анна видит, как вы растягиваетесь и искажаетесь, словно она смотрит на вас через гигантскую лупу. Кроме того, чем ближе вы подходите к горизонту, тем больше ваши движения замедляются.
Вы не можете крикнуть, поскольку воздуха в космосе нет, но можете попытаться сигнализировать Анне сообщение Морзе светом своего iPhone (даже приложение есть для этого). Однако ваши слова будут достигать ее все медленнее и медленнее, поскольку световые волны растягиваются до все более низких и красных частот: «Хорошо, х о р о ш о, х о р о…».
Когда вы достигнете горизонта, Анна увидит, что вы замерзли, словно кто-то нажал кнопку паузы. Вы отпечатаетесь там, обездвиженный и вытянутый по всей поверхности горизонта, когда нарастающее тепло начнет вас поглощать.
По мнению Анны, вас медленно стирает растяжение пространства, остановка времени и тепло излучения Хокинга. Перед тем как погрузиться в темноту черной дыры, вы превратитесь в пепел.
Но прежде чем начинать планировать похороны, давайте забудем об Анне и посмотрим эту жуткую сцену с вашей точки зрения. И знаете, что тут происходит? Ничего.
Световые волны все больше растягиваются
Вы плывете прямиком в самое зловещее проявление природы и не получаете ни шишки, ни синяка — и уж точно не растягиваетесь, не замедляетесь и не поджариваетесь на излучении. Потому что находитесь в свободном падении и не испытываете гравитации: Эйнштейн назвал это «самой счастливой мыслью».
В конце концов, горизонт событий — это не кирпичная стена, плавающая в пространстве. Это артефакт перспективы. Наблюдатель, который остается вне черной дыры, не может видеть сквозь него, но это не ваша проблема. Для вас горизонта не существует.
Если бы черная дыра была меньше, у вас были бы проблемы. Сила гравитации была бы гораздо сильнее у ваших ног, чем у вашей головы, и растянула бы вас как спагетти. Но к счастью для вас это большая черная дыра, в миллионы раз массивнее Солнца, так что силы, которые могли бы вас спагеттифицировать, достаточно слабы, чтобы их можно было проигнорировать.
Более того, в достаточно большой черной дыре вы могли бы прожить остаток своей жизни, а после умереть в сингулярности.
Возможно ли вернуться обратно из черной дыры?
Насколько нормальной эта жизнь будет, большой вопрос, учитывая что вас засосало против вашей воли в разрыв в пространственно-временном континууме и обратного пути нет.
Но если задуматься, нам всем знакомо это чувство, по опыту общения не с пространством, но со временем. Время идет только вперед, никогда назад, и засасывает нас против нашей воли, не оставляя шанса на отступление.
Это не просто аналогия. Черные дыры искажают пространство и время до такого экстремального состояния, что внутри горизонта событий черной дыры пространство и время на самом деле меняются ролями. В действительности, именно время засасывает вас в сингулярность. Вы не можете развернуться и уйти из черной дыры точно так же, как не можете развернуться и уйти обратно в прошлое.
В этот момент вы спросите себя: что не так с Анной? Если вы прохлаждаетесь внутри черной дыры, будучи окруженным пустым пространством, почему ваш напарник видит, как вы сгораете в излучении на горизонте событий? Галлюцинации?
А как ваше путешествие будет выглядеть со стороны наблюдателя?
На самом деле, Анна пребывает в полном здравии. С ее точки зрения вы действительно сгорели на горизонте. Это не иллюзия. Она даже могла бы собрать ваш пепел и отправить его домой.
На самом деле, законы природы требуют, чтобы вы оставались за пределами черной дыры, как это видно с точки зрения Анны. Это потому что квантовая физика требует, чтобы информация не пропадала, не терялась. Каждый бит информации, который говорит о вашем существовании, должен оставаться за пределами горизонта, чтобы законы физики Анны не нарушались.
С другой стороны, законы физики также требуют, чтобы вы плыли через горизонт, не сталкиваясь с горячими частицами или чем-то из ряда вон выходящего. В противном случае, вы будете нарушать «самую счастливую мысль» Эйнштейна и его общую теорию относительности.
Итак, законы физики требуют, чтобы вы одновременно были снаружи черной дыры в виде горстки пепла и внутри черной дыры, живы и здоровы. И есть также третий законы физики, который говорит, что информация не может быть клонирована. Вы должны быть в двух местах, но может быть только одна копия вас.