Делаем умную теплицу на ардуино своими руками

Умный автополив растений на базе Arduino

Растения играют важную роль в жизни человека. Мы получаем множество преимуществ, живя в соседстве с растениями – это свежий воздух, приятная атмосфера и конечно же полезное питание.

Многие люди пытаются окружить себя растениями как в квартире, так и на своих участках

И неважно будь это комнатные растения или посадки на дачном участке, растения требуют к себе внимания и ухода. Всё же иногда из-за напряжённого образа жизни мы элементарно забываем вовремя полить их

Это негативно сказывается на состоянии растений. Чтобы избавиться от этой проблемы, придуманы системы автополива.

В этой статье подробно расписано как сделать автополив для комнатных и уличных растений на базе Arduino своими руками.

Наш автополив на Ардуино поливает растение только днём, когда почва пересыхает. В системе используются датчик влажности почвы и фоторезистор.

Основная цель этой системы заключается в отслеживание времени суток и влажности. Если днём земля просыхает, микроконтроллер включает водяной насос. Когда земля достаточно увлажнится, насос выключается.

Проведение калибровки

На датчике будут отображаться значения, которые напрямую связаны с кислотностью земли. Соответственно, перед запуском автополивщика необходимо выполнить простую калибровку. Она проводится таким образом:

  • Сначала записываются цифры, полученные после того, как датчик воткнут с сухую почву. Это минимальная влажность.
  • Затем нужно полить растение и подождать момента, когда вода впитается в землю. Показатели должны оставаться на стабильном уровне, зачастую это в районе 60%, но все растения разные, поэтому предварительно узнайте, насколько ваш зеленый друг требователен к этому параметру. Их также следует сохранить, поскольку это максимальная влажность.
  • С готовыми результатами следует отредактировать наш скетч (код в среде Arduino IDE), изменяем значение минимальной влажности, в нашем коде это — MIN _HUM и MAX_HUM на параметр нормальной влажности.
  • Остается перепрошить Arduino Uno, для этого подключает через кабель к пк, выбираем порт, плату, жмем в правом углу кнопку загрузить.
  • Расширение функциональности автополивщика

Выше была предложена система для одного горшка. На практике, автополив на Адруино эффективнее применять для нескольких растений. Для этого к Адруино можно подключить дополнительные насосы и сенсоры влажности. Однако можно поступить намного проще. В поставляемом с насосом шланге можно сделать дырочки с учетом расстояния, на котором расположены растения. В полученные отверстия можно воткнуть стержни простых ручек. Результат получится примерно такого вида:

Часто в помещениях растения в горшках располагают на подоконнике одним рядом. Это облегчает задачу, поскольку трубка крепится к горшкам таким образом, чтобы распределить выводы с водой по одному на растение. Единственное — с таким решением, настройка автоматического полива выполняется с учетом одного растения. Если горшки более-менее одинаковые по габаритам, скорость высыхания в них почвы должна быть равной. Как вариант, можно совместить оба способа масштабирования, что позволит поделить всю растительность на примерно одинаковые по габаритам горшки.

Работа схемы

В этом проекте мы использовали самодельный датчик влажности почвы на основе зонда, который будет использоваться для измерения уровня влажности почвы. Для изготовления зонда мы использовали доску, покрытую медью как показано на рисунке ниже (можно использовать ненужный кусок печатной платы). Один контакт зонда будет подсоединен к Vcc (напряжению постоянного тока), а другой – к базе транзистора BC547. К базе транзистора также подключен потенциометр для регулирования чувствительности датчика влажности почвы.

Плата Arduino будет управлять всем процессом работы нашей системы. Выход схемы измерения влажности непосредственно подсоединен к цифровому контакту D7 платы Arduino. Светодиод, присутствующий в схеме датчика, показывает наличие влаги в почве, когда он горит – влаги достаточно, а когда он выключен – это свидетельствует об отсутствии влаги в почве.

GSM модуль используется для передачи SMS пользователю. Мы использовали TTL SIM800 GSM модуль, который имеет выход непосредственно в TTL модуль, но можно использовать и любой другой GSM модуль. Регулятор напряжения LM317 используется для подачи питания на SIM800 GSM модуль. LM317 очень чувствителен к максимально допустимому напряжению и перед его использованием рекомендуется прочитать даташит на него. Его рабочее напряжение составляет от 3.8v до 4.2v (более предпочтительно использовать 3.8v). На следующем рисунке показана схема подачи питания на TTL sim800 GSM модуль:

Если вам нужно использовать SIM900 TTL модуль, то вы должны использовать 5V, а если вы хотите использовать SIM900 модуль, то вы должны подключить 12v в DC Jack slot платы.

Реле 12V используется для управления небольшим водяным насосом, работающим от 220VAC. Реле управляется с помощью транзистора BC547, который в дальнейшем подсоединен к цифровому контакту 11 платы Arduino.

ЖК дисплей (опционально) используется для отображения статуса устройства и сообщений. Управляющие контакты ЖК дисплея RS и EN подключены к контактам 14 и 15 платы Arduino, а контакты данных D4-D7 непосредственно подключены к контактам 16, 17, 18 и 19 платы Arduino. ЖК дисплей используется в 4-битном режиме и управляется встроенной библиотекой Arduino.

Полная схема устройства представлена на следующем рисунке.

Изготовление и тестирование

Схема односторонней печатной платы действительного размера автоматической системы полива растений показана на рис. 5, а компоновка ее компонентов – на рис. 6.

Соберите компоненты на печатной плате, чтобы минимизировать ошибки. В качестве альтернативы, вы можете собрать их на макете или щите Arduino для макетирования или на печатной плате общего назначения. Загрузите код на плату Arduino UNO и установите датчики в почву горшечных растений. Не погружайте датчики полностью в почву.

Установите насос в емкость для воды (см. Рис. 7), которая может вместить несколько литров воды. прикрепите водопроводную трубу к рупору серводвигателя, как показано на рис. 8.

Рис. 6: Компонентная схема печатной платыРис. 7: Установка водяного насоса в контейнерРис. 8: Крепление трубы на рупор сервопривода

Скачать исходный код: 

Перед включением схемы необходимо иметь в виду следующие макроопределения в коде:

  1. Изменение угла поворота серво-рупора в сторону первого сосуда и второго сосуда. Значения по умолчанию составляют 70 градусов и 145 градусов.
  2. Изменение времени полива в зависимости от размера горшка. Значения по умолчанию составляют пять секунд и восемь секунд.
  3. Изменение порогового значения в соответствии с вашими потребностями. Значение по умолчанию составляет 600.

Поместите цветочные горшки там, где труба из рупора серводвигателя может легко добраться до них. Когда уровень влажности опускается ниже 600, рупор сервопривода поворачивается под углом 70 градусов. То есть после того, как гудок серводвигателя переместится на 70 градусов к первому корпусу, моторный насос включится на пять секунд, а затем автоматически остановится. Затем сервопривод возвращается в исходное положение. Аналогичным образом, если вы используете второй датчик, гудок серводвигателя переместится на 145 градусов ко второму по величине резервуару, моторный насос включится на восемь секунд, а затем автоматически остановится. Серво возвращается в исходное положение.

Дальнейшее применение

Используя доску Arduino UNO, вы можете поливать шесть разных горшечных растений. Добавив еще несколько строк в код, вы можете поливать еще больше растений – используя плату Arduino Mega 2560, которая имеет больше аналоговых входных контактов.

Вы также можете добавить экран Ethernet или Wi-Fi и использовать библиотеку Twitter, которая будет отправлять твиты со стороны ваших растений для отправки сообщений, таких как: мне нужна вода, бак пуст, заправьте бак, спасибо за воду и так далее ,

ЖК-дисплей 16 × 2 может быть добавлен для индикации уровня влажности.

Вы также можете включить контур для повторного заполнения резервуара через несколько дней, в зависимости от объема резервуара.

electronicsforu.com

Программная часть

С оборудованием все понятно. Осталось разобраться с программами, которые им управляют и контролируют состояние всей системы. Так как в комплексе есть два высокоинтеллектуальных устройства — ESS8266 и сам Arduino. Соответственно для обоих нужны свои программы. Помещение их в память устройств, в обоих случаях производится через Arduino IDE.

Управление

Ну и в финале, большой скетч управления самой теплицей, который выгружается в Arduino.

Замечания по конструкции

Датчик DN11 желательно заменить на DN22, который хоть и стоит дороже, но более точен и функционирует без проблем свойственных своему младшему тезке. Для питания контуров управления можно использовать компьютерный блок питания, желательно форм-фактора AT.

Измерение влажности почвы с помощью аналогового выхода

Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.

Подключение

Давайте подключим наш датчик влажности почвы к плате Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.

Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.

Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.

И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на рисунке ниже.

Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Калибровка

Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.

Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.

Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.

Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:

  • ~ 850, когда почва сухая;
  • ~ 400, когда почва полностью насыщена влагой.

Рисунок 7 – Калибровка датчика влажности почвы

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.

Финальная сборка

Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:

  • <500 – слишком влажная;
  • 500-750 – это целевой диапазон;
  • >750 – достаточно сухая для полива.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы

Наши ответы на ваши вопросы

Все хотят датчики влажности, каждый третий об этом написал.

  • Вопрос: зачем тогда нужен таймер и все эти настройки? Мой проект не об этом, мой проект о таймере
  • С датчиками влажности МИКРОКОНТРОЛЛЕР ВООБЩЕ НЕ НУЖЕН. Почему? Как? Смотрите ЗДЕСЬ
  • Все жалуются на дождь. В видео звучало слово “теплица” и “рассада”, там не идёт дождь
  • Китайские датчики влажности почвы разъедаются почвой, так как сделаны не из золота!

Да, согласен, нужна одна помпа и клапана на каналы! Добавил прошивку auto-pumps_valve, читайте описание в начале скетча, там всё написано!

Многоканальная система автополива растений для установки в умную теплицу, на огород или в квартиру. Особенности:

  • Поддержка от 1 до 15 помп (Arduino NANO / UNO)
  • Индивидуальная настройка периода и времени работы
  • Дисплей 1602 с отображением настроек
  • Индивидуальное название каждого канала (можно по-русски!)
  • Удобное управление и настройка энкодером
  • Хранение настроек в энергонезависимой памяти
  • Настройка уровня управляющего сигнала
  • Настройка часы/минуты/секунды работы
  • Параллельный режим работы / очередь

МАТЕРИАЛЫ И КОМПОНЕНТЫ

Ссылки на магазины, с которых я закупаюсь уже не один год

Вам скорее всего пригодится:

Почти все компоненты можно взять в магазине WAVGAT по первым ссылкам

  • Arduino NANO с ногами http://ali.pub/2iaezd http://ali.pub/2iaezy
  • Arduino NANO без ног http://ali.pub/2iaewn http://ali.pub/2iaey0
  • Помпа 5V http://ali.pub/2iaf0x http://ali.pub/2iaf1w
  • Помпа 12V http://ali.pub/2iaf41 http://ali.pub/2iaf5l
  • Дисплей http://ali.pub/2iaf75 http://ali.pub/2iaf84
  • Энкодер http://ali.pub/2iafdk http://ali.pub/2iafe5
  • Колпачки D shaft http://ali.pub/2id0ut
  • Реле электромагнитное
    • 1 канал http://ali.pub/2iafsc
    • 2 канала http://ali.pub/2iaft4
    • 4 канала http://ali.pub/2iaftb
    • 8 каналов http://ali.pub/2iafua
    • 16 каналов http://ali.pub/2iafuo
  • Реле твердотельное
    • 1 канал http://ali.pub/2iafwm
    • 2 канала http://ali.pub/2iafx0
    • 4 канала http://ali.pub/2iafxe
    • 8 каналов http://ali.pub/2iafxl
  • Макетная плата http://ali.pub/2iafj7
  • Джамперы папа-мама http://ali.pub/2iafkk
  • Джамперы макетные http://ali.pub/2iafi1
  • Блок питания 5V – любой зарядник для смартфона
  • Блок питания 12V https://alexgyver.ru/converters/
  • Разветвитель потока с краниками http://ali.pub/2iafzq
  • Разветвитель потока без краников http://ali.pub/2iag1a
  • Шланг силиконовый http://ali.pub/2iag2u
  • Тройничок http://ali.pub/2iag5k

Подготовка к сборке

Очевидно, что платы Адруино для сборки будет недостаточно. Для работы потребуется подготовить следующие компоненты:

  • Плата Arduino Uno (Arduino Rev3) — оригинальная платформа.
  • Troyka Shield — плата для подключения датчиков. Избавит от необходимости припаивать датчики или пользоваться макетными платами.
  • Водяной насос и датчик влажности (с которым идет шлейф для подключения).
  • Силовой ключ (на базе полевого транзистора) также с готовым шлейфом.
  • Нажимной клеммник (для надлежащего крепления проводков).
  • Проводы типа «папа-папа» и «мама-папа» по одной единице.
  • Импульсный адаптер (ток 1000 мА) и USB-провод.

Для тестирования прибора и последующей эксплуатации также потребуется одно или несколько растений либо в горшках, либо вам придется перед этим их посадить. Единственное, о чем стоит помнить — земля в них должна быть сухой. Также не лишним будет приготовить четырёхразрядный индикатор со шлейфом, который облегчит индикацию.

Процесс сборки

Чтобы получить в распоряжение готовый для настройки ирригатор, потребуется выполнить следующие действия:

  • Первоначально установить плату Troyka Shield на Arduino Uno.
  • К пину A0 через Troyka Shield подключается сенсор определения влажности;
  • Также посредством Troyka Shiled к основной платке подключается дисплей. Здесь пин CS нужно соединить с 9-ым пином Troyka Shield, а к соответствующему выходу на Troyka Shield цепляем SPI пины дисплея.
  • Силовой ключ присоединяем к четвертому контакту.
  • Затем к силовому ключу подводим коммутирующее напряжение через разъем с подписями P+ и P–.
  • Водяной насос подключается к силовому ключе через пины L+ и L−.

    В результате наша небольшая схема готова и должна выглядеть так:

  • Теперь щуп датчика влажности втыкаем в почву с уже посаженным в нем растением.
  • Конец шланга тоже помещается в почву. Если вес горшка меньше 2 кг, желательно дополнительно трубку укрепить. Это исключит риск опрокинуть горшок с нашим растением.
  • Последним шагом опускаем насос в резервуар с водой и запитываем нашу схему.

Теперь ирригатор собран и потребуется провести его дополнительную настройку.

Работа схемы

В этом проекте мы использовали самодельный датчик влажности почвы на основе зонда, который будет использоваться для измерения уровня влажности почвы. Для изготовления зонда мы использовали доску, покрытую медью как показано на рисунке ниже (можно использовать ненужный кусок печатной платы). Один контакт зонда будет подсоединен к Vcc (напряжению постоянного тока), а другой – к базе транзистора BC547. К базе транзистора также подключен потенциометр для регулирования чувствительности датчика влажности почвы.

Плата Arduino будет управлять всем процессом работы нашей системы. Выход схемы измерения влажности непосредственно подсоединен к цифровому контакту D7 платы Arduino. Светодиод, присутствующий в схеме датчика, показывает наличие влаги в почве, когда он горит – влаги достаточно, а когда он выключен – это свидетельствует об отсутствии влаги в почве.

GSM модуль используется для передачи SMS пользователю. Мы использовали TTL SIM800 GSM модуль, который имеет выход непосредственно в TTL модуль, но можно использовать и любой другой GSM модуль. Регулятор напряжения LM317 используется для подачи питания на SIM800 GSM модуль. LM317 очень чувствителен к максимально допустимому напряжению и перед его использованием рекомендуется прочитать даташит на него. Его рабочее напряжение составляет от 3.8v до 4.2v (более предпочтительно использовать 3.8v). На следующем рисунке показана схема подачи питания на TTL sim800 GSM модуль:

Если вам нужно использовать SIM900 TTL модуль, то вы должны использовать 5V, а если вы хотите использовать SIM900 модуль, то вы должны подключить 12v в DC Jack slot платы.

Реле 12V используется для управления небольшим водяным насосом, работающим от 220VAC. Реле управляется с помощью транзистора BC547, который в дальнейшем подсоединен к цифровому контакту 11 платы Arduino.

ЖК дисплей (опционально) используется для отображения статуса устройства и сообщений. Управляющие контакты ЖК дисплея RS и EN подключены к контактам 14 и 15 платы Arduino, а контакты данных D4-D7 непосредственно подключены к контактам 16, 17, 18 и 19 платы Arduino. ЖК дисплей используется в 4-битном режиме и управляется встроенной библиотекой Arduino.

Полная схема устройства представлена на следующем рисунке.

Компоненты и их описания

Arduino Uno

Arduino взаимодействует через датчики с окружающей средой и обрабатывает поступившую информацию в соответствии с заложенной в неё программой. Подробнее с платой Ардуино Уно можно ознакомиться здесь.

Ардуино Уно

Датчик влажности почвы

Измерение влажности почвы на базе Arduino производится с помощью датчика влажности. Датчик имеет два контакта. Через эти контакты при погружении их в грунт протекает ток. Величина тока зависит от сопротивления грунта. Поскольку вода является хорошим проводником тока, наличие влаги в почве сильно влияет на показатель сопротивления. Это значит, чем больше влажность почвы, тем меньше она оказывает сопротивление току.

Датчик влажности почвы

Этот датчик может выполнять свою работу в цифровом и аналоговом режимах. В нашем проекте используется датчик в цифровом режиме.
На модуле датчика есть потенциометр. С помощью этого потенциометра устанавливается пороговое значение. Также на модуле установлен компаратор. Компаратор сравнивает данные выхода датчика с пороговым значением и после этого даёт нам выходной сигнал через цифровой вывод. Когда значение датчика больше чем пороговое, цифровой выход передаёт 5 вольт (HIGH), земля сухая. В противном случае, когда данные датчика будут меньше чем пороговые, на цифровой вывод передаётся 0 вольт (LOW), земля влажная.

Этим потенциометром необходимо отрегулировать степень сухости почвы, когда как вы считаете нужно начать полив.

Фоторезистор

Фоторезистор (LDR) — это светочувствительное устройство, которое используются для определения интенсивности освещения. Значение сопротивления LDR зависит от освещённости. Чем больше света, тем меньше сопротивление. Совместно с резистором, фоторезистор образует делитель напряжения. Резистор в нашем случае взяли 10кОм.

Делитель напряжения

Подключив выход делителя Uin к аналоговому входу Ардуино, мы сможем считывать напряжения на выходе делителя. Напряжение на выходе будет меняться в зависимости от сопротивления фоторезистора. Минимальное напряжение соответствует темноте, максимальное – максимальной освещённости.

В этом проекте полив начинается в соответствии с пороговым значением напряжения. В утренние часы, когда считается целесообразным начать полив, напряжение на выходе делителя равно 400. Примем это значение как пороговое. Так если напряжения на делителе меньше или равно 400, это означает, что сейчас ночь и насос должен быть выключен.
Меняя пороговое значение можно настроить период работы автополива.

Релейный модуль

Реле представляет собой переключатель с электромеханическим или электрическим приводом.

Релейный модуль

Привод реле приводится в действие небольшим напряжением, например, 5 вольт от микроконтроллера, при этом замыкается или размыкается цепь высокого напряжения.

Схема реле

В этом проекте используется 12 вольтовый водяной насос. Arduino Uno не может управлять напрямую насосом, поскольку максимальное напряжение на выводах Ардуино 5 вольт. Здесь нам приходит на помощь релейный модуль.

Релейный модуль имеет два типа контактов: нормально замкнутые и нормально разомкнутые контакты. Нормально замкнутые без управляющего напряжения замкнуты, при подаче напряжения размыкаются. Соответственно нормально разомкнутые без напряжения разомкнуты, при подаче управляющего напряжения замыкаются. В проекте используются нормально разомкнутые контакты.

Водяной насос

В проекте используем 12-и вольтовый погружной насос с 18-ваттным двигателем. Он может поднимать воду до 1,7 метра.

Водяной насос

Этот насос можно эксплуатировать только тогда, когда он полностью погружен в воду. Это налагает некие обязательства по контролю уровня воды в ёмкости. Если водяной насос будет работать без воды, он просто-напросто сгорит.

Макетная плата

Макетная плата представляет собой соединительную плату, используемую для создания прототипов проектов электроники, без пайки.

Процесс сборки

Чтобы получить в распоряжение готовый для настройки ирригатор, потребуется выполнить следующие действия:

  • Первоначально установить плату Troyka Shield на Arduino Uno.
  • К пину A0 через Troyka Shield подключается сенсор определения влажности;
  • Также посредством Troyka Shiled к основной платке подключается дисплей. Здесь пин CS нужно соединить с 9-ым пином Troyka Shield, а к соответствующему выходу на Troyka Shield цепляем SPI пины дисплея.
  • Силовой ключ присоединяем к четвертому контакту.
  • Затем к силовому ключу подводим коммутирующее напряжение через разъем с подписями P+ и P–.
  • Водяной насос подключается к силовому ключе через пины L+ и L−.

    В результате наша небольшая схема готова и должна выглядеть так:

  • Теперь щуп датчика влажности втыкаем в почву с уже посаженным в нем растением.
  • Конец шланга тоже помещается в почву. Если вес горшка меньше 2 кг, желательно дополнительно трубку укрепить. Это исключит риск опрокинуть горшок с нашим растением.
  • Последним шагом опускаем насос в резервуар с водой и запитываем нашу схему.

Теперь ирригатор собран и потребуется провести его дополнительную настройку.

Контроль уровня влажности почвы — пример проекта

В приведенном ниже проекте использованы датчик уровня влажности, аналог платы Arduino — RedBoard и LCD дисплей, на котором выводятся данные про уровень влажности почвы.

В приведенном ниже проекте использованы датчик уровня влажности, аналог платы Arduino — RedBoard и LCD дисплей, на котором выводятся данные про уровень влажности почвы.

Датчик уровня влажности почвы компании SparkFun:

Красный проводник (VCC) подключается к 5 В на Arduino, черный — к земле (GND), зеленый — сигнал — к аналоговому пину 0 (A0). Если вы используете другой аналоговый пин на Arduino, не забудьте внести соответствующие изменения в скетч для микроконтроллера, представленный ниже.

LCD дисплей подключен к 5 В, земле и цифровому пину 2 (также можно изменить и внести изменения в код) для обмена данными с микроконтроллером по серийному протоколу связи.

Стоит отметить, что если вы хотите продлить срок службы вашего сенсора, можно подключить его питание к цифровому пину и питать его только при считывании данных, а после — отключать. Если запитывать датчик постоянно, его чувствительные элементы вскоре начнут ржаветь. Чем больше влажность почвы, тем быстрее будет проходить коррозия. Еще один вариант – нанести гипс на датчик. В результате влага будет поступать, но коррозия значительно замедляется.

Заключение

На самом деле, существует множество модификаций автополивщика на Адруино. Отличаются они между собой дополнительными возможностями и особенностями конструкции. Тем не менее, принцип их работы практически одинаков — программа считывает данные с датчика влажности и запускает водяную помпу, если обнаруживает их минимальное значение. Затем насос работает до того момента, пока датчик не покажет данные, соответствующие максимальным показателям.

В процессе сборки не должно возникнуть трудностей, однако предварительно следует постараться обезопасить датчик влажности. Предложенное программное обеспечение протестировано и после калибровки не нуждается в дополнительных настройках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector